Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Trigonometria e Números Complexos - Rosana Camilo da Rosa, Notas de estudo de Eletrônica

E-book completo sobre trigonometria e números complexos

Tipologia: Notas de estudo

2012

Compartilhado em 26/10/2012

julio-guardiola-9
julio-guardiola-9 🇧🇷

4

(2)

11 documentos

1 / 326

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Universidade do Sul de Santa Catarina
Palhoça
UnisulVirtual
2007
Trigonometria e
Números Complexos
Disciplina na modalidade a distância
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Pré-visualização parcial do texto

Baixe Trigonometria e Números Complexos - Rosana Camilo da Rosa e outras Notas de estudo em PDF para Eletrônica, somente na Docsity!

Universidade do Sul de Santa Catarina

Palhoça

UnisulVirtual

Trigonometria e Números Complexos

Disciplina na modalidade a distância

Créditos

Unisul - Universidade do Sul de Santa Catarina UnisulVirtual - Educação Superior a Distância Campus UnisulVirtual Rua João Pereira dos Santos, 303 Palhoça - SC - 88130- Fone/fax: (48) 3279-1541 e 3279- E-mail: cursovirtual@unisul.br Site: www.virtual.unisul.br Reitor Unisul Gerson Luiz Joner da Silveira Vice-Reitor e Pró-Reitor Acadêmico Sebastião Salésio Heerdt Chefe de Gabinete da Reitoria Fabian Martins de Castro Pró-Reitor Administrativo Marcus Vinícius Anátoles da Silva Ferreira Campus Sul Diretor: Valter Alves Schmitz Neto Diretora adjunta: Alexandra Orsoni Campus Norte Diretor: Ailton Nazareno Soares Diretora adjunta: Cibele Schuelter Campus UnisulVirtual Diretor: João Vianney Diretora adjunta: Jucimara Roesler Equipe UnisulVirtual Administração Renato André Luz Valmir Venício Inácio Bibliotecária Soraya Arruda Waltrick Cerimonial de Formatura Jackson Schuelter Wiggers Coordenação dos Cursos Adriano Sérgio da Cunha Aloísio José Rodrigues Ana Luisa Mülbert Ana Paula Reusing Pacheco Cátia Melissa S. Rodrigues (Auxiliar) Charles Cesconetto Diva Marília Flemming Itamar Pedro Bevilaqua Janete Elza Felisbino Jucimara Roesler Lilian Cristina Pettres (Auxiliar) Lauro José Ballock Luiz Guilherme Buchmann Figueiredo Luiz Otávio Botelho Lento Marcelo Cavalcanti Mauri Luiz Heerdt Mauro Faccioni Filho Michelle Denise Durieux Lopes Destri Moacir Heerdt Nélio Herzmann Onei Tadeu Dutra Patrícia Alberton Patrícia Pozza Raulino Jacó Brüning Rose Clér E. Beche Tade-Ane de Amorim (Disciplinas a Distância) Design Gráfico Cristiano Neri Gonçalves Ribeiro (Coordenador) Adriana Ferreira dos Santos Alex Sandro Xavier Evandro Guedes Machado Fernando Roberto Dias Zimmermann Higor Ghisi Luciano Pedro Paulo Alves Teixeira Rafael Pessi Vilson Martins Filho Gerência de Relacionamento com o Mercado Walter Félix Cardoso Júnior Logística de Encontros Presenciais Marcia Luz de Oliveira (Coordenadora) Aracelli Araldi Graciele Marinês Lindenmayr Guilherme M. B. Pereira José Carlos Teixeira Letícia Cristina Barbosa Kênia Alexandra Costa Hermann Priscila Santos Alves Logística de Materiais Jeferson Cassiano Almeida da Costa (Coordenador) Eduardo Kraus Monitoria e Suporte Rafael da Cunha Lara (Coordenador) Adriana Silveira Caroline Mendonça Dyego Rachadel Edison Rodrigo Valim Francielle Arruda Gabriela Malinverni Barbieri Josiane Conceição Leal Maria Eugênia Ferreira Celeghin Rachel Lopes C. Pinto Simone Andréa de Castilho Tatiane Silva Vinícius Maycot Serafim Produção Industrial e Suporte Arthur Emmanuel F. Silveira (Coordenador) Francisco Asp Projetos Corporativos Diane Dal Mago Vanderlei Brasil Secretaria de Ensino a Distância Karine Augusta Zanoni (Secretária de Ensino) Ana Luísa Mittelztatt Ana Paula Pereira Djeime Sammer Bortolotti Carla Cristina Sbardella Franciele da Silva Bruchado Grasiela Martins James Marcel Silva Ribeiro Lamuniê Souza Liana Pamplona Marcelo Pereira Marcos Alcides Medeiros Junior Maria Isabel Aragon Olavo Lajús Priscilla Geovana Pagani Silvana Henrique Silva Vilmar Isaurino Vidal Secretária Executiva Viviane Schalata Martins Tecnologia Osmar de Oliveira Braz Júnior (Coordenador) Ricardo Alexandre Bianchini Rodrigo de Barcelos Martins Equipe Didático- pedagógica Capacitação e Apoio Pedagógico à Tutoria Angelita Marçal Flores (Coordenadora) Caroline Batista Enzo de Oliveira Moreira Patrícia Meneghel Vanessa Francine Corrêa Design Instrucional Daniela Erani Monteiro Will (Coordenadora) Carmen Maria Cipriani Pandini Carolina Hoeller da Silva Boeing Dênia Falcão de Bittencourt Flávia Lumi Matuzawa Karla Leonora Dahse Nunes Leandro Kingeski Pacheco Ligia Maria Soufen Tumolo Márcia Loch Viviane Bastos Viviani Poyer Núcleo de Avaliação da Aprendizagem Márcia Loch (Coordenadora) Cristina Klipp de Oliveira Silvana Denise Guimarães Pesquisa e Desenvolvimento Dênia Falcão de Bittencourt (Coordenadora) Núcleo de Acessibilidade Vanessa de Andrade Manuel

Rosana Camilo da Rosa Eliane Darela Paulo Henrique Rufino

Palhoça

UnisulVirtual

Design Instrucional

Karla Leonora Dahse Nunes

2ª edição revista e atualizada

Trigonometria e Números Complexos

Livro didático

UNIDADE 4 – Estudando as Relações, Equações e Inequações

  • Apresentação
  • Palavras dos professores
  • Plano de estudo
  • UNIDADE 1 – Estudando a Trigonometria nos Triângulos
  • UNIDADE 2 – Conceitos Básicos da Trigonometria
  • UNIDADE 3 – Estudando as Funções Trigonométricas
    • Trigonométricas
  • UNIDADE 5 – Números Complexos
  • Para concluir o estudo
  • Sobre os professores conteudistas
  • Respostas e comentários das atividades de auto-avaliação
  • Referências
  • Anexo

Plano de estudo O plano de estudos visa a orientá-lo/a no desenvolvimento da disciplina. Nele, você encontrará elementos que esclarecerão o contexto da disciplina e sugerirão formas de organizar o seu tempo de estudos. O processo de ensino e aprendizagem na UnisulVirtual leva em conta instrumentos que se articulam e se complementam. Assim, a construção de competências se dá sobre a articulação de metodologias e por meio das diversas formas de ação/mediação. São elementos deste processo: o livro didático; o Espaço UnisulVirtual de Aprendizagem (EVA); as atividades de avaliação (auto-avaliação, a distância e presenciais).

Carga Horária

60 horas – 4 créditos.

Ementa

Arcos e ângulos. Funções trigonométricas. Relações trigonométricas. Equações e inequações trigonométricas. Números Complexos. Operações e representações dos números complexos. Trigonometria e os números complexos.   

13 Trigonometria e Números Complexos Compreender os conceitos de módulo e argumento de um número complexo z. Apresentar a forma trigonométrica de z. Operar com números complexos na forma algébrica e trigonométrica.

Conteúdo programático/objetivos

Os objetivos de cada unidade definem o conjunto de conhecimentos que você deverá deter para o desenvolvimento de habilidades e competências necessárias a sua formação. Neste sentido, veja a seguir as unidades que compõem o Livro Didático desta disciplina, bem como os seus respectivos objetivos.

Unidades de estudo: 5

Unidade 1 - Estudando a Trigonometria nos Triângulos Nesta unidade, apresentam-se as razões trigonométricas nos triângulos retângulos, bem como as leis dos senos e cossenos em triângulos quaisquer. O estudo desta unidade nos permite a resolução de problemas que envolvem situações reais. Unidade 2 - Conceitos Básicos da Trigonometria Nesta unidade, são apresentados conceitos relativos à trigonometria na circunferência. Estes conceitos são fundamentais para definir o seno e o cosseno na circunferência trigonométrica, o que também será abordado nesta unidade. Unidade 3 - Estudando as Funções Trigonométricas As funções trigonométricas, também conhecidas como funções circulares, serão discutidas nesta unidade, possibilitando a leitura gráfica e a modelagem de problemas práticos. Os recursos tecnológicos serão indispensáveis, pois facilitam as representações gráficas.  

14 Universidade do Sul de Santa Catarina Unidade 4 - Estudando as Relações, Equações e Inequações Trigonométricas O estudo das relações e transformações trigonométricas será abordado nesta unidade, salientando-se que as relações trigonométricas são decorrentes do seno e cosseno de um arco, estudados na unidade 2. Amplia-se o estudo, nesta unidade, abordando equações e inequações trigonométricas. Unidade 5 - Números Complexos Nesta unidade, apresenta-se um novo conjunto, chamado conjunto dos números complexos. Serão abordadas as operações na forma algébrica e trigonométrica, bem como a representação gráfica desse número.

Agenda de atividades/ Cronograma

Verifique com atenção o EVA. Organize-se para acessar periodicamente o espaço da Disciplina. O sucesso nos seus estudos depende da priorização do tempo para a leitura; da realização de análises e sínteses do conteúdo; e da interação com os seus colegas e tutor. Não perca os prazos das atividades. Registre as datas no espaço a seguir, com base no cronograma da disciplina disponibilizado no EVA. Use o quadro para agendar e programar as atividades relativas ao desenvolvimento da Disciplina.   

UNIDADE 1 Estudando a Trigonometria nos Triângulos Objetivos de aprendizagem  (^) Desenvolver o conceito de razões trigonométricas no triângulo retângulo.  (^) Resolver problemas aplicando as relações fundamentais entre as razões trigonométricas.  (^) Reconhecer e aplicar a lei dos cossenos e a lei dos senos na resolução de triângulos. Seções de estudo Seção 1 Introdução à Trigonometria Seção 2 Definindo as razões trigonométricas no triângulo retângulo Seção 3 Relações trigonométricas em um triângulo qualquer: lei dos senos e lei dos cossenos

19 Trigonometria e Números Complexos Unidade 1 Você sabia... Triângulo retângulo é um triângulo que possui um ângulo reto (90º). O estudo da trigonometria foi impulsionado pela necessidade de evolução da Agrimensura, Navegação e Astronomia, já que as dimensões do universo sempre fascinaram os cientistas. O astrônomo grego Aristarco de Samos (310 a.C. - 230 a.C.) foi um dos primeiros a calcular as distâncias que separam a Terra, a Lua e o Sol. Para isso, ele usou relações entre as medidas dos lados dos triângulos retângulos com seus ângulos internos. Acredita-se que, como ciência, a trigonometria nasceu com o astrônomo grego Hiparco de Nicéia (190 a.C. - 125 a.C.), também conhecido como o Pai da Trigonometria por ter estudado e sistematizado algumas relações entre os elementos de um triângulo. A relação entre as medidas dos lados de um triângulo com as medidas de seus ângulos é de grande utilidade na medição de distâncias inacessíveis ao homem, como a altura de montanhas, torres e árvores, ou a largura de rios e lagos. Também encontra-se aplicações da trigonometria na Engenharia, na Mecânica, na Eletricidade, na Acústica, na Medicina e até na Música. Para compreender, acesse o site sugerido na seção ‘saiba mais’ ao final desta unidade.

20 Universidade do Sul de Santa Catarina SEÇÃO 2 - Definindo as razões trigonométricas no triângulo retângulo Do ponto de vista matemático, o desenvolvimento da trigonometria está associado à descoberta de constantes nas relações entre os lados de um triângulo retângulo. Suponha que a Figura 1.1 represente uma rampa, em uma pista de skate, que forma um ângulo de α graus com o solo: Quando o skatista percorre 50 m sobre a rampa, o mesmo fica a uma altura de 30 metros e o seu deslocamento na horizontal é de 40 metros; Quando o skatista percorre 75 m sobre a rampa, o mesmo fica a uma altura de 45 metros e o seu deslocamento na horizontal é de 60 metros; Quando o skatista percorre 100 m sobre a rampa, o mesmo fica a uma altura de 60 metros e o seu deslocamento na horizontal é de 80 metros. Figura 1.1: Representação da situação problema Na figura 1.2, tem-se os triângulos retângulos ABS, ACT e ADU semelhantes entre si. Escreva a razão entre a altura que o skatista atinge e a distância percorrida sobre a rampa, para os três momentos considerados.   