























Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Este documento, da disciplina de probabilidade ii da universidade federal da paraíba, apresenta as desigualdades de chebyshev, markov e jensen, demonstrando sua importância e utilidade na probabilidade e estatística. São fornecidos exemplos e provas para cada desigualdade.
Tipologia: Notas de aula
1 / 31
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Departamento de Estatística
Universidade Federal da Paraíba
Um teorema de grande importância e bastante utilidade em probabilidade e estatística é a desigualdade de Chebyshev.
Esta desigualdade é fundamental para o entendimento de como a variância mede a variabilidade em relação ao valor esperado de uma variável aleatória.
Dada uma variável aleatória X e conhecida a sua distribuição de probabilidade
Contudo, a recíproca não é válida.
Desigualdade Básica de Chebyshev
Desigualdade Básica de Chebyshev
Desigualdade Básica de Chebyshev
Apesar de podermos obter estimativas mais precisas por outros métodos, a desigualdade de Chebyshev fornece uma avaliação probabilística que combinada com outros fatores, dá subsídios à tomada de decisões.
Por exemplo, é possível verificar que a probabilidade de até 70 usuários
conexão, a empresa deveria ampliar suas linhas telefônicas para 70.
Desigualdade Clássica de Chebyshev
Desigualdade Clássica de Chebyshev
Exemplo 3: Obtenha o limite da desigualdade
o limite obtido acima.
Desigualdade Clássica de Chebyshev
O resultado obtido da desigualdade de Chebyshev está coerente com esse resultado. Contudo este último é mais preciso.
Na prática, a desigualdade de Chebyshev é usada na obtenção de estimativas, quando não é conveniente, ou quando é impossível obter valores exatos.
Desigualdade Clássica de Chebyshev Exemplo 4: Em uma certa empresa, constatou-se que o número médio, por
probabilidade de se constatar uma variação de até 12 faltas em torno do valor médio registrado?
Desigualdade Clássica de Chebyshev
desigualdade de Chebyshev.
Se a partir de uma amostra pudermos obter estimativas de momentos da variável, a desigualdade acima pode ajudar a estabelecer limites em probabilidade de interesse.