Baixe Máquinas de Elevação e Transporte hoje.pdf e outras Manuais, Projetos, Pesquisas em PDF para Máquinas, somente na Docsity!
AS MÁQUINAS DE ELEVAÇÃO
E TRANSPORTE
1.1. Introdução1.1. Introdução1.1. Introdução1.1. Introdução1.1. Introdução
Este capítulo apresenta de uma forma abrangente
os tipos de máquinas e instalações de transporte.
Cabe lembrar que quando se fala de máquinas de
elevação e transporte, se refere aqueles mecanismos
que deslocam cargas normalmente à pequenas
distâncias e internamente aos pavilhões e oficinas.
Algumas exceções contemplam o transporte externo
para deslocar cargas nos pátios das empresas.
Desde a chegada da matéria prima sob as formas
as mais variadas possíveis até o produto acabado
para expedição, ocorre todo um sistema de
movimentação interna de carga. Este movimento
depende fundamentalmente do perfil da empresa
com relação ao seu processo de fabricação e tipo de
produto produzido.
Sua importância dentro do processo produtivo é
confirmada pelo desempenho apresentado no
decorrer da fabricação de peças e componentes
mecânicos.
1.2.1.2.1.2.1.2.1.2. ClassificaçãoClassificaçãoClassificaçãoClassificaçãoClassificação dosdosdosdosdos equipamentosequipamentosequipamentosequipamentosequipamentos dedededede
elevação e transporteelevação e transporteelevação e transporteelevação e transporteelevação e transporte
As máquinas de elevação são classificadas em
três grandes grupos:
a) Equipamentos com mecanismo de elevação.
São máquinas destinadas a mover cargas sob a forma
unitária ou em lotes. Dentro desta categoria podemos
incluir as pontes rolantes, elevadores, pórticos, talhas,
etc. As máquinas deste grupo operam levantando e
baixando a carga, podendo também deslocar no
sentido horizontal, inclusive com mecanismo de giro.
b) Equipamento de transporte operando
normalmente sem mecanismo de elevação. Estas
máquinas movimentam as carga de forma contínua.
Entre os diversos tipos podem-se citar os
transportadores contínuos de correia, os
transportadores de canecos, aparelhos pneumáticos,
aparelhos hidráulicos, etc.
c) Equipamentos de superfície. Podem ou não
contar com mecanismo de elevação. As cargas são
usualmente movimentadas em lotes. Neste tipo de
máquina, o deslocamento se faz na superfície sem
um caminho fixo do tipo trilho. Alguns exemplos sãs
as empilhadeiras, os guindastes sobre rodas, etc.
1.3.1.3.1.3.1.3.1.3. SeleçãoSeleçãoSeleçãoSeleçãoSeleção dasdasdasdasdas máquinasmáquinasmáquinasmáquinasmáquinas dedededede movimentarmovimentarmovimentarmovimentarmovimentar
cargascargascargascargascargas
A escolha de um determinado equipamento vai
depender principalmente das características
individuais de cada empresa. A diversidade das
máquinas é grande, muitas vezes confundido o
engenheiro que não tem experiência suficiente sobre
o assunto. Um estudo elaborado sobre a escolha da
máquina mais apropriada deverá ser feito entre o
sistema produtivo, incluindo os supervisores e os
operários da seção que trabalharão de forma direta
com o equipamento.
Algumas considerações técnicas devem ser
levadas em conta no momento da tomada de decisão
o que limitará o número de equipamentos possíveis:
a) Qual o tipo de carga que será movimentada.
Este é o primeiro passo a ser estudado. No caso de
carga unitária, deve-se levar em consideração a forma,
o volume, as dimensões, a fragilidade, a temperatura
de conservação, entre outros. Isto permitirá estimar a
velocidade com que pode ser deslocada a carga, se
existe a possibilidade de empilhamento, etc. Para
as cargas a granel, deverá ser levado em conta as
dimensões da caçamba de movimentação, se existe
possibilidade de choque entre os grãos, etc.
b) Capacidade horária requerida por unidade.
Implicará no melhor aproveitamento da eficiência e
capacidade da máquina. Este fator é calculado desde
o instante que a carga é fixada, seu deslocamento
para o ponto desejado, descarregamento e retorno
ao ponto inicial.
c) Tipo de percurso e distância. A escolha deverá
se basear no tipo de percurso, se é reto ou curvo, se
existem ondulações da superfície, qual a distância a
ser percorrida pela carga, etc.
d) Empilhamento da carga nos pontos iniciais,
intermediários e finais. O sistema de carregamento
sobre os veículos e descarregamento no destino
diferem consideravelmente. Algumas máquinas de
elevação podem ser carregadas de forma mecânica,
outras necessitam de equipamentos especiais,
também o carregamento manual é bastante comum.
O empilhamento nos diversos setores dependerá do
tipo de carga a ser transportada. No caso de cargas
unitárias elas podem ser arrumadas diretamente no
chão, ou em tablados, prateleiras, bandejas, etc., da
forma que mais convém as necessidades da empresa
no sentido de facilitar seu manuseio dentro do espaço
disponível.
e) Características em relação ao processo
produtivo. É um fator muito importante na escolha
das máquinas de levantamento. Sua seleção vai
depender do processo produtivo no todo ou em função
de um setor específico.
Por exemplo, na usinagem de peças grandes, a
carga e descarga da máquina operatriz é contínuo
exigindo um equipamento com características
próprias de robustez e velocidade de operação, para
que não ocorra um estrangulamento da produção. Nos
diversos departamentos de uma indústria, deve-se
levar em conta a peculiaridade da fabricação, por
exemplo, guindastes para movimentar peças a serem
soldadas, movimentação de peças de fundição,
deslocamento de peças para pintura, etc.
f) Condições específicas da empresa. Deverá ser
levado em consideração a área de movimentação,
tipo de construção, ambiente de trabalho como
temperatura, poeiras, agentes corrosivos, gases, etc.
Também, e de grande importância, é a previsão de
possível expansão da empresa, do tipo de energia
disponível, condições de higiene e segurança
operacional.
g) Custos operacionais. Finalmente, deverá ser
levado em consideração o custo do capital incial e os
custos operacionais. Isto inclui desde a aquisição (ou
projeto) e montagem do equipamento, construções
necessárias para opercionalizar seu funcionamento,
consumo de energia, manutenção, etc.
1.4. Características técnicas das máquinas de1.4. Características técnicas das máquinas de1.4. Características técnicas das máquinas de1.4. Características técnicas das máquinas de1.4. Características técnicas das máquinas de
elevaçãoelevaçãoelevaçãoelevaçãoelevação
Os principais parâmetros a serem considerados
nas máquinas de elevação são sua capacidade
máxima, velocidades de deslocamento, altura de
elevação e dimensões geométricas da máquina (vão,
alcance, etc.).
A capacidade horária de uma máquina pode ser
calculada pela seguinte relação:
Qm = Q.n [N/h]
t
n
∑
onde n - número de ciclos da máquina por hora;
∑t - tempo total em segundos gasto nas
operações durante um ciclo;
Q - peso da carga a ser elevada [N].
No caso de cargas a granel, o peso é dado pela
capacidade do mecanismo na extremidade do
equipamento (caçamba, casco, etc.), multiplicado
pelo peso específico do material:
Q = V.γ.ϕ
onde V - Capacidade [m^3 ];
γ - massa específica [N/m^3 ];
ϕ - fator de aproveitamento.
A capacidade total de elevação de carga da
máquina será dada pela relação:
QTotal = Qm + Q 0
onde Q 0 - peso do mecanismo na extremidade
(caçamba, casco, eletroimã, etc.).
1.5. Estado de solicitação1.5. Estado de solicitação1.5. Estado de solicitação1.5. Estado de solicitação1.5. Estado de solicitação
Os estados de solicitação indicam em que média
um mecanismo ou elemento do mecanismo é
submetido à sua solicitação máxima ou solicitações
menores. A Figura 1 mostra os estados de solicitação
em função de sua utilização.
1.6. Classe de funcionamento1.6. Classe de funcionamento1.6. Classe de funcionamento1.6. Classe de funcionamento1.6. Classe de funcionamento
As classes de funcionamento caracterizam o
tempo médio de funcionamento diário efetivo de um
mecanismo, em horas. Um mecanismo é considerado
em funcionamento somente quando está em
movimento.
1.7. Determinação do estado de solicitação e1.7. Determinação do estado de solicitação e1.7. Determinação do estado de solicitação e1.7. Determinação do estado de solicitação e1.7. Determinação do estado de solicitação e
classe de funcionamentoclasse de funcionamentoclasse de funcionamentoclasse de funcionamentoclasse de funcionamento
CABOS DE AÇO, POLIAS
E TAMBORES
2.1. Introdução2.1. Introdução2.1. Introdução2.1. Introdução2.1. Introdução
Os cabos de aço são universalmente empregados
como elemento flexível em máquinas de elevação.
Eles apresentam propriedades melhores que as
correntes nas características de leveza, silenciosos,
mesmo a altas velocidades, menos solavancos ao
passar pelas polias e tambores, e maior confiança
em operação. A desvantagem com relação as
correntes é a necessidade de mecanismo de elevação
maior (tambores e polias) o que torna o sistema
pesado.
Os cabos são fabricados de aço carbono com
composição química determinada pelo fabricante
dentro de limites normalizados. Normalmente eles têm
uma composição química composta por C entre 0,
e 0,8%, Mn entre 0,3 e 0,7%, Si 0,2% máximo, P + S
somados com um valor máximo de 0,04%. Certos
cabos, para aplicações especiais, são fabricados em
aço inoxidável do tipo AISI 304 ou 316.
A tensão de resistência dos arames com os quais
são fabricados os cabos varia entre 1200 MPa e 2300
MPa.
O diâmetro dos cabos de aço fornecido pelos
fabricantes é o nominal, podendo muitas vezes diferir
deste, mas sempre de acordo com normas
internacionais. Por exemplo, a norma alemã DIN
admite uma tolerância de mais ou menos 5% em
relação ao diâmetro nominal. As normas americanas
admitem as tolerâncias mostradas na Tabela 2.1.
A forma da medida correta do diâmetro de cabos
está mostrada na Figura 2.1.
Os cabos de aços devem ser manuseados com
cuidado para evitar a formação de defeitos, como
por exemplo “nós”. Logo que se forme um laço, Figura
2.2, o mesmo deve ser imediatamente desfeito pois
TTTTTabela 2.1.abela 2.1.abela 2.1.abela 2.1.abela 2.1. Tolerâncias nos diâmetros dos cabos de aço.
Figura 2.1.Figura 2.1.Figura 2.1. Método correto de medida do diâmetro deFigura 2.1.Figura 2.1. cabos de aço.
FFFFFigura 2.2.igura 2.2.igura 2.2.igura 2.2. Formação de laço pelo manuseio incorretoigura 2.2. do cabo.
se for muito fechado, forma-se o nó, o que acarreta
diminuição da resistência do cabo pela tensão desigual
nas pernas. Um modo correto de desenrolar o cabo é
apoiar a bobina sobre dois cavaletes, mantendo o
eixo na horizontal, Figura 2.3.
DDDDD i i i iiâââââmmmmmeeeeetttttrrrrrooooonnnnnooooommmmmiiiiinnnnnaaaaallllldddddooooocccccaaaaabbbbb ooooo TTTTTo o o o ollllleeeeerrrrrââââânnnnnccccciiiiiaaaaa
[[[[[ m mmmm mmmmm ]]]]] [[[[[ p p p ppooooolllll]]]]] [[[[[ m mmmm mmmmm]]]]] [[[[[p p p p pooooolllll]]]]]
0 a 19 , 0 0 a 3 / 4 " - 0 ;+ 0 , 8 - 0 ;+ 1 / 32 "
20 a 29 13/ 6 1 " a 1.^1 /8" - 0 ;+ 1 , 2 - 0 ;+ 3 / 64 "
30 a 38 1. 3 / 6 1 " a 1.^1 /2" - 0 ;+ 1 , 6 - 0 ;+ 1 / 16 "
39 a 57 1. 9 / 6 1 " a 2.^1 /4" - 0 ;+ 2 , 4 - 0 ;+ 3 / 32 "
(^0) (^10) (^20) (^30) 40
0 1 2 3 (^4) 5
(^0) (^10) (^20) (^30) 40
0 1 2 3 (^4) (^5)
Errado Certo
Figura 2.3.Figura 2.3.Figura 2.3.Figura 2.3.Figura 2.3. Maneira correta de desenrolar um cabo.
2.2. Construção dos cabos2.2. Construção dos cabos2.2. Construção dos cabos2.2. Construção dos cabos2.2. Construção dos cabos
Os cabos são fabricados com fios de aço
trançado o que constitui a perna. Estas pernas, em
número de 6 a 8, são finalmente trançadas ao redor
da alma constituindo o cabo, Figura 2.4.
Figura 2.4.Figura 2.4.Figura 2.4.Figura 2.4.Figura 2.4. Construção de um cabo de aço.
A alma do cabo de aço pode ser de fibra ou
metálica. A finalidade da alma de fibra é evitar o
contato entre as pernas, tornar o cabo mais flexível e
também servir de elemento lubrificante pela absorção
de óleo durante a fabricação do cabo. Além disso,
os cabos com alma de fibra são mais fáceis de
trançar e conformar. A fibra normalmente é natural,
feita de sisal, algodão, rami e juta, ou artificial tipo
sintético como por exemplo polipropileno, polietileno,
nylon, entre outros. A vantagem das fibras sintéticas
é não absorverem umidade e resistirem a ambientes
corrosivos, mas seu uso é limitado pelo custo elevado.
A alma de aço é usada principalmente em locais com
temperaturas elevadas como por exemplo em
siderurgia e fundição, ou onde se deseja um aumento
da resistência do cabo para um mesmo diâmetro.
As pernas que compõe o cabo podem ser
torcidas de dois modos. Quando são da esquerda
para direita diz-se que o cabo é de “torção direita”, e
no caso da direita para a esquerda, “torção esquerda”.
Além disso, os cabos podem ser de torção regular
quando os fios que compõe a perna são torcidos no
sentido oposto à torção da perna na alma. Quando
os fios são torcidos no mesmo sentido que a perna
da alma, o cabo é dito de torção Lang. Neste caso,
ocorre um aumento da resistência à abrasão do cabo
e também da flexibilidade. Seu uso no entanto é
limitado pois apresentam pouca estabilidade e
pequena resistência ao amassamento.
O passo de um cabo é definido como a distância
na qual uma perna da uma volta completa em torno
da alma, Figura 2.5.
alma
arame
arame central
perna
cabo de aço
arame
arame central
perna
alma
cabo de aço
passo
FFFFFigura 2.5.igura 2.5.igura 2.5.igura 2.5. Passo de um cabo.igura 2.5.
Atualmente os cabos de aço são pré-formados,
ou seja, os arames com que eles são fabricados
passam por um processo de conformação que lhes
confere a forma de enrolamento. Isto aumenta a vida
útil do cabo pois diminui as tensões internas
distribuindo a carga uniformemente sobre cada
arame. Além disso, os arames que se rompem não
se destacam do cabo, bem como as extremidades
não se abrem quando se corta o cabo. Outras
vantagens são a maior flexibilidade e também maior
segurança operacional.
2.3. Lubrificação2.3. Lubrificação2.3. Lubrificação2.3. Lubrificação2.3. Lubrificação
Os cabos de aço são lubrificados internamente e
externamente durante sua fabricação. Esta
lubrificação é muito importante pois dela dependerá
a vida útil do mesmo. Um dos grandes problemas
que ocorre com a falta de lubrificação é a corrosão
interna dos fios, não sendo perceptíveis na parte
externa, e os atritos internos, levando a ruptura do
cabo. Com o uso, o lubrificante é expelido para a
superfície, a fibra fica seca e absorve umidade o que
danifica o cabo. Portanto, é imperativo a lubrificação
periódica do cabo. O tipo de óleo deve ser o
recomendado pelo fabricante do cabo. Nunca se deve
utilizar óleo queimado para tal operação, ele é um
material ácido que em vez de proteger acelera o
processo de corrosão. Além disso, como já foi
utilizado, ele normalmente apresenta partículas que
acabam aumentando o desgaste do cabo por
abrasão.
Existem vários modos para lubrificar os cabos de
aços, como mostrado na Figura 2.6.
Um exemplo característico é o tipo 6 x 36 [1 + 7
+ (7 + 7) + 14], trata-se de um cabo Warrington 1 +
7 + (7 + 7) com uma capa externa de 14 fios de
arame mais grossos. Seu funcionamento é igual ao
anterior, com maior flexibilidade. São ideais para
equipamentos que enrolam e desenrolam todo o
tempo.
2.5. Flexibilidade2.5. Flexibilidade2.5. Flexibilidade2.5. Flexibilidade2.5. Flexibilidade
A flexibilidade de um cabo de aço está em
proporção inversa ao diâmetro dos arames externos
do mesmo, enquanto que a resistência à abrasão é
diretamente proporcional a este diâmetro. A Tabela
2.2 mostra de forma esquemática a relação entre
flexibilidade e resistência para alguns cabos mais
empregados industrialmente.
TTTTTabela 2.2.abela 2.2.abela 2.2.abela 2.2.abela 2.2. Relação flexibilidade x resistência à abrasão de cabos de aço.
2.6. Cálculo do diâmetro dos cabos2.6. Cálculo do diâmetro dos cabos2.6. Cálculo do diâmetro dos cabos2.6. Cálculo do diâmetro dos cabos2.6. Cálculo do diâmetro dos cabos
Existem vários métodos de calcular o diâmetro
de um cabo em função da solicitação do mesmo. O
método mais simples, relaciona o diâmetro mínimo
em função de um coeficiente de utilização e do
esforço sobre o cabo.
Considerando o coeficiente de segurança ε como
sendo a relação entre a resistência à ruptura σr de
cada fio e a tensão de tração no cabo σt, temos:
Como
m t (^) A
F
σ = ,^ onde Am é a área real dos fios:
e a seção nominal do cabo:
x
A
A = m
4 F
x π d. r 2
⋅
σ ε
então,
finalmente chega-se a:
onde k - coeficiente de utilização
F - esforço no cabo [N]
O coeficiente x é 0,46 em média.
O coeficiente de utilização é escolhido em função
do tipo de mecanismo e carga, do número de ciclos
e da velocidade de trabalho. Podemos dividir o ciclo
de trabalho em cinco grupos, segundo a Tabela 2.3.
Considera-se um ciclo, o trabalho completo para
execução da tarefa.
Para determinar o coeficiente k e o fator de
segurança e utiliza-se a Tabela 2.4.
2.7. P2.7. P2.7. P2.7. P2.7. Polias e tambores para cabosolias e tambores para cabosolias e tambores para cabosolias e tambores para cabosolias e tambores para cabos
A Figura 2.12 mostra um esquema do gorne (ca-
nal) de polia recomendado para cabos de aço. Este
tipo de gorne favorece a vida útil do cabo diminuindo
o seu desgaste pois se consegue o maior número de
flexões e a máxima durabilidade. O esforço é
distribuído em vários pontos de contato entre o cabo
e a polia. Outros tipos de gornes, como por exemplo
no caso (a), oferecem pouco contato levando ao
desgaste prematuro do cabo e na situação (b) o cabo
é esmagado na ranhura diminuindo sua vida útil.
Flexibilidade
Abrasão
Figura 2.12.Figura 2.12.Figura 2.12.Figura 2.12.Figura 2.12. Exemplos de gornes de polias para cabos de aço.
As polias são feitas de ferro fundido cinzento, aço
fundido, ou fabricadas de chapas montadas e
soldadas.
Considerando o atrito nos mancais pode-se tomar
como rendimento das polias η ≈ 0,96 a 0,98. Os
mancais podem ser de rolamento ou buchas de
bronze.
r
F 10
x
d ⋅ ⋅ ⋅ ⋅
=
1 mín
d =k⋅ F⋅ 10
t
r σ
σ ε =
π d A
2 m
⋅
[mm/ N]
A x A
m
TTTTT iiiiipppppooooodddddeeeeecccccaaaaabbbbbooo oo
6 x 41 FillerouWarrington-Seale
6 x 36 FillerouWarrington-Seal e
6 x 25 Fille r
6 x 21 Filler
6 x 19 Seale
6 x 7
90º
(a) 135ºa (b) 150º
O do canal
O da polia
TTTTTabela 2.3.abela 2.3.abela 2.3.abela 2.3.abela 2.3. Classificação dos aparelhos de levantamento segundo os vários grupos.
GGGGG r rrrr uuuuupppppooo oo FFFFFr r (^) r r reeeeeqqqqqüüüüüêêêêênnnnnccccciiiiiaaaaadddddooooommmmmooooovvvvviiiiimmmmmeeeeennnnntttttooooo -----tttttiiiiipppppooooodddddeeeee mmmmm eeeeecccccaaaaannnnniiiiisssssmmmmm ooooo CCCCC lllllaaaaasssssssssseeeeedddddeeeeecccccaaaaarrrrrgggggaaaaa
I
MMMMM o oooovvvvviiiiimmmmmeeeeennnnntttttooooodddddeeeeeppppprrrrreeeeeccccciiiiisssssãããããooo oo Guindastespesadoseflutuantestipolança Guindastesgiratóriostipolança Pórticosdedescarregamentotipolança Gruaparaconstruçãociviltipolança
Arbitrári a
I I
MMMMM o oooovvvvviiiiimmmmmeeeeennnnntttttooooopppppooooouuuuucccccooooofffffrrrrreeeeeqqqqqüüüüüeeeeennnnnttttteee ee Sarilhosetalhasmanuais Pontesdecasademáquinas Pontesrolantesparalocomotivas Pontesdeoficinasdepequenacapacidade Pontesdemontagem Guindastesdeestaleiro Guindastespesadoseflutuantestipoelevação Guindastesgiratóriosdegancho
Cargasparciai s
I I
MMMMM o oooovvvvviiiiimmmmmeeeeennnnntttttooooofffffrrrrreeeeeqqqqqüüüüüeeeeennnnnttttteee ee Pontesrolantesparalocomotivas Pontesdeoficinasdepequenacapacidade Pontesdefundição Pórticosdedescarregamentocarganogancho
Cargasparciai s
II I
MMMMM o oooovvvvviiiiimmmmmeeeeennnnntttttooooopppppooooouuuuucccccooooofffffrrrrreeeeeqqqqqüüüüüeeeeennnnnttttteee ee Pontesdeoficinasdegrandecapacidade Guindastesgiratóriosdeeletroímã Ponteslevesmontagemdecilindros laminadores Guindastesdeestaleiro
Cargasmáxima s
I V
MMMMM o oooovvvvviiiiimmmmmeeeeennnnntttttooooofffffrrrrreeeeeqqqqqüüüüüeeeeennnnnttttteee ee Pórticodedescarregamentocomcaçamba Basculadordevagão Guindastesgiratóriosdecaçamba Pontesparatransportedelaminados Bateestacas
Cargasmáxima s
V
MMMMM o oooovvvvviiiiimmmmmeeeeennnnntttttooooofffffrrrrreeeeeqqqqqüüüüüeeeeennnnnttttteee ee Equipamentosparaalimentaçãodefornos Pontescomgarrasdesuspensão Pontesdevazamento Pontesparatransportedelingoteelingoteiras Pontesparadesmoldarlingotes
Todotipodecarg a emindústria siderúrgica
TTTTTabela 2.4.abela 2.4.abela 2.4.abela 2.4. Valores limites de segurançaabela 2.4. ε, e coeficiente k.
GGGGGr r r r ruuuuupppppoooooddddd ooooo ccccc a (^) a a aabbbbbooooo
NNNNN ºººººdddddeeeee ccccci i i i iccccclllllooooosssss/// // hhhhh o (^) o o oorrrrr aaaaa
CCCCC aaaaabbbbbooooo
kkkkk
I < 6 5 , 5 - 6 0 , 28 - 0 , 30
I I 6 a 18 5 , 5 - 6 0 , 30 - 0 , 32
II I 18 a 30 6 - 7 0 , 32 - 0 , 34
I V 30 a 60 7 - 8 0 , 34 - 0 , 37
V > 60 8 - 9 , 5 0 , 37 - 0 , 40
[mm/ N]
TTTabela 2.7. TTabela 2.7.abela 2.7.abela 2.7.abela 2.7. Polias para cabos (norma DIN 15059).
O comprimento da hélice sobre o tambor é
calculado pela relação l=z ⋅t
t - passo
O comprimento total do tambor, Figura 2.13,
levando em conta o sistema de fixação do cabo, mais
às flanges laterais, mais as duas espiras de segurança
é dado por:
7 t
πD
hi
L ⋅
Se dois cabos são enrolados no tambor, Figura
2.14, caso de talhas múltiplas, a equação fica:
D
1
D
2
c l r
D
d
b 1
Polia fundida
c
r
D
d
b 1
D
1
D
2 l
Polia soldada
1
12 t c π D
hi L + ⋅ + ⋅
= (^)
FFFFFigura 2.13.igura 2.13.igura 2.13.igura 2.13.igura 2.13. Tambor para cabo simples.
DDDDD 11111
PPPPP o oooollllliiiiiaaaaa sssss
PPPPP o o o oollllliiiiiaaaaassssscccccooooommmmmpppppeeeeennnnnsssssaaaaadddddooooorrrrraaaaasssss(((((eeeeeqqqqquuuuuiiiiilllllíííííbbbbbrrrrriiiiiooooo )))))
DDDDD 22222
bbbbb 11111 bbbbb 22222 ( )((((** * * * )))) ccccc lllll
rrrrr ddddd DDDDD 22222
bbbbb 11111 bbbbb 22222 ccccc lllll (((((* * * * ******))))) rrrrr ddddd FFFFF º ºººº FFFFFººººº AAAAA^ çççççooooo fffff u u u uunnnnndddddiiiiidddddooooo AAAAAç ç (^) ç ç ç ooooo CCCCC^ o^ o^ o^ ootttttaaaaa mmmmm á ááááxxxxx .....
CCCCCo o o o ottttt aaaaa mmmmm áááááxxxxx... .. FFFFF º º º ººFFFFF ººººº AAAAA çççççooooo fffffu u u u u nnnnndddddiiiiidddddooooo AAAAA çççççooooo CCCCC oooootttttaaaaa mmmmm ííííínnnnn .....
CCCCC ooooottttt aaaaa mmmmmá á á á áxxxxx .....
CCCCCo o o o ottttt aaaaa mmmmmí í í í ínnnnn .....
CCCCC o oooottttt aaaaa mmmmmá á á á áxxxxx ..... 80 1 05 22 2 2 20 25 30 50 2 3 , 5 - - - - - - - 1 00 13 0 25 2 5 20 25 30 50 2 , 7 3 , 5 - 5 - (^) - - - - - - 12 5 16 0 30 30 25 30 35 60 3 , 5 5 - 6 , 5 - - - - - - - 1 60 20 0 32 30 25 40 35 60 4 , 3 6 , 5 - 8 20 0 36 32 50 60 5 , 4 8 - 10 20 0 24 0 36 3 2 25 50 40 60 5 , 4 8 - 10 25 0 40 36 60 70 7 10 - 13 25 0 30 0 40 36 25 60 50 70 7 10 - 13 30 5 50 45 70 80 8 , 5 13 - 16 31 5 37 5 50 4 5 30 80 60 80 8 , 5 13 - 16 38 0 60 55 80 10 0 12 16 - 22 40 0 46 0 60 5 5 40 10 0 70 12 0 12 16 - 22 48 0 70 65 90 11 0 14 , 5 22 - 27 50 0 58 0 70 6 5 50 12 5 80 14 0 14 , 5 22 - 27 59 0 80 75 11 0 14 0 18 27 - 33 63 0 72 0 80 7 5 60 14 0 80 15 0 18 2 7 - 33 73 0 95 90 12 5 15 0 23 40 - 43 71 0 80 0 85 80 70 16 0 90 18 0 18 2 7 - 33 84 0 11 5 11 0 12 5 15 0 26 43 - 45 - 48 80 0 90 0 95 90 80 18 0 10 0 2 00 23 33 - 40 - 4393 0 13 5 13 0 14 0 17 0 29 48 - 51 - 54 90 0 10 10 10 5 9 5 90 20 0 13 0 2 40 24 40 - 43 - (^45) (*)Alarguradaranhuradaspoliassoldadasédada títuloindicativ o 10 00 11 20
11 0 10 5 90 20 0 13 0 2 40
24 40 - 43 - 45 11 5 1 10 29 48 - 51 - 54 (**)Ocomprimentodocubodaspoliasmontadas combuchaspodeserescolhidoentreacotamínima e máximaocomprimentodocubodaspoliasmontadas emrolamentosédeixadaacritériodoconstrutor).
11 20 12 50
11 5 1 10 10 0 22 0 13 0 2 50
26 43 - 45 - 48 12 5 11 5 32 51 - 54 - 58
12 50 14 00
12 5 1 20 10 0 22 0 16 0 2 50
26 45 - 48 13 5 1 30 32 51 - 54 - 58 14 00 15 50 13 5 1 30 10 0 22 0 20 0 2 50 32 51 - 54 - 58
L
3.t 2.t
FFFFFigura 2.14.igura 2.14.igura 2.14.igura 2.14.igura 2.14. Tambor para enrolamento de dois cabos.
FFFFFigura 2.15.igura 2.15.igura 2.15.igura 2.15.igura 2.15. Sistema de fixação de cabos no tambor.
A equação leva em conta a espessura de ambos
os flanges mais a fixação dos cabos e mais duas
espiras de segurança para ambos os lados. A
distância c 1 , é o espaço que separa os dois tipos de
enrolamento, a direita e a esquerda.
2.8. Sistemas de fixação do cabo no tambor2.8. Sistemas de fixação do cabo no tambor2.8. Sistemas de fixação do cabo no tambor2.8. Sistemas de fixação do cabo no tambor2.8. Sistemas de fixação do cabo no tambor
A Figura 2.15 exemplifica alguns modelos de
fixação da extremidade do cabo no tambor.
efetuando a ligação. Este tipo de união é 100%
eficiente.
Soquete chumbador aberto
Soquete chumbador fechado
Figura 2.16.Figura 2.16.Figura 2.16.Figura 2.16.Figura 2.16. Soquetes chumbadores.
Figura 2.17Figura 2.17Figura 2.17Figura 2.17Figura 2.17. Fixação de um cabo em soquete.
Cálculo das dimensões do soquete. Considerando
a resultante da carga como um esforço concentrado
no centro da luva cônica, Figura 2.18, temos:
2 sen
Q
F
onde Q é o esforço no cabo.
Pode-se também considerar:
p S
F
Figura 2.18.Figura 2.18.Figura 2.18.Figura 2.18.Figura 2.18. Esquema para o cálculo do soquete.
onde p – pressão nas paredes do soquete;
S – área de apoio em contato.
A área de um tronco de cone é:
c(d d) π
S 1
2.9. Emendas e uniões de cabos2.9. Emendas e uniões de cabos2.9. Emendas e uniões de cabos2.9. Emendas e uniões de cabos2.9. Emendas e uniões de cabos
Nas extremidades dos cabos de aço são fixados
ganchos, olhais, argolas, e outros. Os sistemas de
uniões são variados sendo os mais utilizados: soquete
chumbador, clips, presilha de aço, cunha, ou
trançados.
a) Fixação por soquete chumbador. Os soquetes
podem ser de dois tipos, abertos ou fechados, Figura
O cabo é amarrado na extremidade com um fio
mole de aço. Após, é introduzido no soquete e as
pontas dobradas em forma de gancho, Figura 2.17.
Feito o ajuste, uma liga de metal “patente” (chumbo-
zinco-antimônio) derretida, é vazada no interior
A
A
A - A
F (^) F
c
e e d 1 α α
r
h
α α
d
Q
L
3.t (^) c 1 3.t
Chumbo derretido
Figura 2.20.Figura 2.20.Figura 2.20.Figura 2.20.Figura 2.20. Fixação de laços com presilha.
Figura 2.21.Figura 2.21.Figura 2.21.Figura 2.21.Figura 2.21. Ligação por meio de cunha.
e) Fixação por fios trançados. Neste tipo de ligação
as pernas são trançadas em um comprimento mínimo
de 25 vezes o diâmetro do cabo, em seguida
amarradas com fio de aço, Figura 2.22. É um sistema
lento, e sua qualidade depende da habilidade do
operador. A segurança de utilização fica entre 70% e
Figura 2.22.Figura 2.22.Figura 2.22.Figura 2.22.Figura 2.22. Ligação de cabo por trançado a mão.
Substituição dos cabos. Os fios que compõe o
cabo de aço quebram por desgaste e fadiga. Ensaios
mostram que um cabo com fios quebrados resistem
a esforços próximos da ruptura, porém, em trabalho
os cabos estão sujeitos também a flexão, o que
diminui consideravelmente sua resistência.
A norma DIN 15020, conforme ilustra a Tabela
2.10, prevê a substituição do cabo quando houver
um número determinado de fios quebrados em
função do diâmetro e tipo de cabo.
Nos Anexos no fim do capítulo, estão
descriminados alguns tipos de cabos para serviços
gerais de engenharia, mineração, elevadores,
indústrias pesadas e outras aplicações (Cimaf). Para
outros tipos de cabos, consultar os catálogos dos
fabricantes.
TTTTTabelaabelaabelaabelaabela 2.10.2.10.2.10.2.10.2.10. Número de fios rompidos para substituição do cabo.
2.10.2.10.2.10.2.10.2.10. Rigidez do cabo sobre polias e tamboresRigidez do cabo sobre polias e tamboresRigidez do cabo sobre polias e tamboresRigidez do cabo sobre polias e tamboresRigidez do cabo sobre polias e tambores
PPPPPolia fixa.olia fixa.olia fixa.olia fixa.olia fixa. Um cabo passando sobre uma polia
ou tambor apresenta uma curvatura ao ser tracionado,
devido ao atrito entre os fios já que os mesmos são
deslocados uns com relação aos outros. Ela tem como
causa a rigidez inelástica dos mesmos. Outro fator
que ocasiona este fenômeno é a resistência elástica
à flexão dos fios, ocasionada pela rigidez elástica.
A Figura 2.23 mostra, de forma esquemática o
que acontece com o cabo. Devido a sua rigidez
elástica, ele sofre um desvio e para fora, sendo
desviado para dentro de uma quantidade e idêntica
ao sair da polia.
Figura 2.23.Figura 2.23.Figura 2.23.Figura 2.23.Figura 2.23. Rigidez do cabo passando sobre uma polia.
e e
α
α
r
Q
F
25.d
Assim, ao fazer o balanço do equilíbrio à flexão
obtém-se:
F ⋅ (r^ ⋅cosα−e)^ =Q⋅(r^ ⋅cosα+e)
ou,
cos
e
cos
e
r cos e
r cos e
Q
F
então,
r cos
2 e
F Q 1
Considerando o atrito nos mancais devido à carga
exercida sobre a polia, pode-se escrever em uma
situação ideal:
( )
r
d
Q
2 r
d
W Q F 0 ≈ ⋅μ⋅
onde μ é o coeficiente de atrito
d diâmetro do eixo da polia
Do somatório dos esforços de flexão e do atrito
chega-se a uma equação do tipo:
r
d
r cos
2 e
F Q 1
O termo entre parêntese é denominado de fator
de resistência da polia e e corresponde ao inverso do
rendimento da polia:
p
então, F = Q/ηp
Como na descida a polia gira no sentido inverso,
a carga Q vence as resistências e a força de retenção
F* será:
F* = Q. ηp
Os valores médios do rendimento das polias ηp
obtidos de forma empírica são:
mancal de escorregamento: 0,
mancal de rolamento: 0,
Neste tipo de polia, o percurso do deslocamento
do cabo é igual ao da carga, e as velocidades do
cabo e da carga também são iguais.
PPPPPolias móveis.olias móveis.olias móveis.olias móveis.olias móveis. Estes tipos de polias podem
ser para ganho de força ou para ganho em velocidade.
Para ganho em força, Figura 2.24, a velocidade com
que a carga é elevada é metade daquela de
deslocamento do cabo. Da mesma forma, a distância
de elevação da carga é metade do comprimento de
cabo que é enrolado.
Desta forma pode-se escrever:
d = 2.h
e
vb = 2.va
FFFFFigura 2.24.igura 2.24.igura 2.24.igura 2.24. Polia móvel para ganho de força.igura 2.24.
Desprezando as perdas nos mancais, a carga Q
seria distribuída nos dois ramais do cabo:
Q = F 0 + F 1
F 0 = Q/
e, levando em contas as perdas que ocorrem na polia:
Q = F + F 1 onde F 1 = F.ηp
substituindo, obtém-se:
1 p
Q
F
Considerando a relação entre os esforços real e
ideal no cabo, encontramos o rendimento total do
sistema:
( ) 2
Q/ 1
Q / 2 p
p
t
Na descida da carga o esforço é dado por:
Fd = F 1 .ηp
onde,
p
d d 1 d
F
Q F F F
e conseqüentemente:
Q
F
p
p d
Nas polias móveis para ganho em velocidade, a
carga é elevada com uma velocidade o dobro daquela
de enrolamento do cabo e o deslocamento também
dobra em relação a este último, Figura 2.25.
Desta forma temos:
h = 2.d
e
va = 2. vb
F(F 0 ) d
h
va
vb
F 1
Pode-se também relacionar o percurso da força
aplicada para um dado sistema de polias em função
do número de cabos:
d = N.h
e a velocidade de elevação será:
vb = N.va
2.11.2. Cabo saindo de uma polia móvel2.11.2. Cabo saindo de uma polia móvel2.11.2. Cabo saindo de uma polia móvel2.11.2. Cabo saindo de uma polia móvel2.11.2. Cabo saindo de uma polia móvel
Nesta situação, como mostra a Figura 2.27, a
carga será sustentada por um número de cabos iguais
ao número de polias mais uma.
Figura 2.27.Figura 2.27.Figura 2.27.Figura 2.27.Figura 2.27. Sistema de polias com o cabo saindo de uma móvel.
Denominando, como visto anteriormente, P igual
ao número de polias e N igual ao número de partes
do cabo:
N = P + 1
Neste caso, a força ideal e real respectivamente
será:
(P 1 )
Q
e F
P 1
Q
F
t
0
Aplicando o mesmo desenvolvimento matemático
como no caso de um cabo saindo de uma polia fixa,
obtém-se:
N p
p 1
F Q
η
η
−
e o rendimento total do sistema é:
( ) (^) p
P 1 p t p
N p t 1
P 1
ou 1
N
η
η η η
η η −
O deslocamento do cabo é obtido da seguinte
relação:
d = (P + 1).h
e a velocidade de elevação será:
vb = (P + 1).va
2.12. Sistemas múltiplos de polias2.12. Sistemas múltiplos de polias2.12. Sistemas múltiplos de polias2.12. Sistemas múltiplos de polias2.12. Sistemas múltiplos de polias
Os sistemas simples de polias são pouco
utilizados por apresentarem falhas no seu sistema
de funcionamento. Como todas as partes do cabo
estão em um plano, pode ocorrer o balanceamento
da carga, além disso, as polias e os diâmetros dos
cabos são maiores. A Figura 2.28 esquematiza alguns
sistemas simples de polias.
Figura 2.28.Figura 2.28.Figura 2.28.Figura 2.28.Figura 2.28. Sistemas simples de polias.
As falhas mencionadas no parágrafo anterior são
evitadas pelo uso de sistemas múltiplos de polias.
Quase todos os equipamentos de movimentação de
carga utilizam este sistema que, além das vantagens
operacionais, diminue o diâmetro do cabo e
consequentemente o diâmetro das polias, tornando
o conjunto compacto e leve. O sistema múltiplo de
polias também é conhecido como sistema de polias
gêmeas.
A Figura 2.29 ilustra alguns sistemas de polias
múltiplas usados em guindastes para ganho de força.
Figura 2.29.Figura 2.29.Figura 2.29.Figura 2.29.Figura 2.29. Sistema múltiplos de polias, com dois cabos (a), quatro cabos (b), seis cabos (c) e em (d) de quatro cabos sem polia compesadora.
Q
F 2
F(F 0 )
F 1
F(F 0 )
Q
F 4 F 3 F 2 F 1
(a) (b)
(c) (d)
Q Q
Q Q
F 2 F 2
F 2
F 1 F 1
F(F 0 ) F 1
F(F 0 ) F(F 0 )
F 3 F 4 F 3
Q Q^ Q
Eles são projetados combinando-se talhas simples
com as duas extremidades dos cabos presas em
tambores, ou tambores, com ranhuras em hélice à
direita e à esquerda. Normalmente este sistema
emprega uma polia compensadora para evitar a
subida irregular do cabo e consequentemente da
carga.
O sistema múltiplo a ser empregado deve ser
adotado em função da carga a ser elevada. Pode-se
considerar válido os seguintes valores:
Para cargas até 25 t, sistema múltiplo de polias
com 4 cabos; para cargas até 75 t, 8 cabos; para
cargas até 100t, 10 cabos e acima de 100t, sistema
de polias com 12 cabos.
A relação de transmissão das talhas múltiplas ou
gêmeas, é dada pela seguinte expressão:
N
i =
onde N - número de partes do cabo.
O comprimento do cabo enrolado em cada meio
tambor é dado por d = ih , e a velocidade do cabo
Vb = i.va.
2.13.2.13.2.13.2.13.2.13. SistemasSistemasSistemasSistemasSistemas dedededede poliaspoliaspoliaspoliaspolias paraparaparaparapara ganhoganhoganhoganhoganho ememememem
velocidadevelocidadevelocidadevelocidadevelocidade
São usados principalmente para sistemas
hidráulicos e pneumáticos com a finalidade de mover
a carga de forma rápida.
A Figura 2.30 mostra de forma ilustrativa um
sistema de talha para elevador hidráulico.
Figura 2.30.Figura 2.30.Figura 2.30.Figura 2.30.Figura 2.30. Sistema de polia para ganho em velocidade.
2.14. T2.14. T2.14. T2.14. T2.14. Talha exponencialalha exponencialalha exponencialalha exponencialalha exponencial
Este tipo de talha não é muito empregado pois
ocupa muito espaço, apesar de apresentar uma
redução da carga maior em função do número de
polias, Figura 2.31.
FFFFFigura 2.31.igura 2.31.igura 2.31.igura 2.31.igura 2.31. Talha exponencial.
Considerando o sistema ideal, isto é, sem perdas
de carga, pode-se escrever:
F 0 = F 1 F 2 = 2.F 1 = 2.F 0
F 3 = 2.F 2 = 2^2 .F 0 F 4 = 2 F 3 = 2^3 .F 0
Q = 2.F 4 = 2^4 .F 0
e de um modo geral
(^0) P
Q
F =
onde P é o número de polias móveis.
Considerando cada polia independente, tem-se
da fórmula:
F 1 = F.ηp
2 (^ p)^ p p
2
1 então F F^1
F
F = ⋅ +η ⋅η
3 (^ p)^2 p p
3
2 então F F^1
F
F = ⋅ +η ⋅η
4 (^ p)^3 p p
4
3 então F F^1
F
F = ⋅ +η ⋅η
assim, podemos escrever de uma forma genérica:
( (^1) t) P t
Q
F
( ) P
p
P p t
2.15. T2.15. T2.15. T2.15. T2.15. Talha diferencial de tamboralha diferencial de tamboralha diferencial de tamboralha diferencial de tamboralha diferencial de tambor
É constituída de um eixo que suporta dois
tambores com diâmetros diferentes, Figura 2.32.
F(F 0 )
Q
F 1
F 2
F 3
F 4
F 1
F 2
F 4
F 3
O coeficiente de atrito efetivo sofre um aumento
conforme o formato da superfície de atrito da polia e
do cabo. A força normal N provoca reações em que a
soma aritmética é superior a ela própria:
0
N
A
Para o caso da Figura 2.30a, cabo sobre ranhura
lisa tem-se:
μ = μ 0 = N = 0,
Para polia com encaixe circular, Figura 2.30b:
π
μ =μ ⋅
0
Polia com encaixe e ranhura na parte inferior, Figura
2.30c:
(usual :70º 110º)
sen
1 sen
β
Polia com garganta em V, Figura 2.30d:
(usual:25º 45º ) sen
2
Pela Figura 2.33 verifica-se que as polias com
ranhuras aumentam a força de arraste, atingindo um
máximo para a ranhura em V. O inconveniente deste
perfil é o contato reduzido entre o cabo e as paredes
laterais o que aumenta o ângulo de prensagem e
diminui o coeficiente aparente de fricção μ 0.
Passando sobre uma polia de fricção, a tensão
do cabo diminui de F 1 para F 2 , o que ocasiona um
deslizamento inevitável, ocorrendo o desgaste das
polias que devem ser tratadas na superfície de
contato.
2.16. Recomendações e ilustrações para o uso2.16. Recomendações e ilustrações para o uso2.16. Recomendações e ilustrações para o uso2.16. Recomendações e ilustrações para o uso2.16. Recomendações e ilustrações para o uso
correto de cabos de aço em diversos serviçoscorreto de cabos de aço em diversos serviçoscorreto de cabos de aço em diversos serviçoscorreto de cabos de aço em diversos serviçoscorreto de cabos de aço em diversos serviços
Na sequência são mostrados alguns
equipamentos com a utilização de cabos de aço
recomendados pelos fabricantes.
A) Cabo de elevação da caçamba (main hoist rope) 6 x 25 Filler, alma de aço (AACI), torção Lang, pré-formado. B) Cabo de elevação da lança (boom hoist rope) 6 x 25 Filler, almadeaço(AACI)torçãoregular, pré-formado. C) Cabo de arraste da caçamba (dipper drag rope) 6 x 25 Filler, alma de aço (AACI), torção Lang, pré-formado. Figura 2.35.Figura 2.35.Figura 2.35.Figura 2.35.Figura 2.35. Escavadeira (dragline)
A
B
C
A
B
C
A) Cabo de elevação (hoist rope) 6 x 25 Filler, alma de fibra (AF), torção regular, pré-formado. B) Cabo de elevação da lança (boom hoist rope) 6 x 25 Filler, alma de aço (AACI) torção regular, pré-formado. C) Cabo para segurar a lança (boom guy) 6 x 25 Filler, alma de aço (AACI), torção regular, pré-formado.
Figura 2.36.Figura 2.36.Figura 2.36.Figura 2.36.Figura 2.36. Guindaste sobre esteira.
B
C
B A
C
A
Figura 2.37.Figura 2.37.Figura 2.37.Figura 2.37.Figura 2.37. Escavadeira (shovel)
A) Cabo de elevação da caçamba (hoist rope)
- Até diâmetro 1 .1/8” inclusive, 6 x 25 Filler, alma de aço (AACI), torção Lang, pré-formado.
- Diâmetro maior, 6 x 41 Warrington- Seale ou 5 x 47 Warrington-Seale, alma de aço (AACI), torção Lang, pré- formado. B) Cabo de elevação da lança (boom hoist rope) 6 x 25 Filler, alma de aço (AACI), torção regular, pré-formado. C) Cabo de abertura da caçamba (trip rope) 6 x 19 Warrington, alma de fibra (AF), torção regular, pré- formado. 6 x 37 Warrington, alma de fibra (AF), torção regular, pré- formado. 8 x 19 Warrington, alma de fibra (AF), torção regular, pré- formado. D) Cabo de comando do braço móvel (crowd e retract rope) 6 x 41 Warrington-Seale, alma de aço (AACI), torção Lang, pré- formado.
B
D
D C
AA
B
D
D
C
A) Cabo de elevação da caçamba (hoist rope)
- Até diâmetro 1.1/8” inclusive, 6 x 25 Filler, alma de aço (AACI), torção Lang, pré-formado
- Diâmetro maior, 6 x 41 ou 6 x 47 Warrington-Seale , alama de aço (AACI), torção Lang, pré-formado. B) Cabo de elevação da lança (boom hoist rope) 6 x 25 Filler, alma de aço (AACI), torção regular, pré-formado. C) Cabo de arraste (drag rope)
- Até diâmetro 5/8” inclusive, 6 x 19, alma de aço (AACI), torção regular, pré-formado.
- Acima de 5/8” até 1.1/8” inclusive, 6 x 21 Filler, alma de aço (AACI), torção lang, pré-formado.
- Diâmetro maior que 1.1/8”, 6 x 25 Filler, alma de aço (AACI), torção Lang, pré-formado.
Figura 2.38.Figura 2.38.Figura 2.38.Figura 2.38.Figura 2.38. Escavadeira (dragline).
C
B
A
B
A
C
C
D
B
A
1
2
D
B
A
C
1
2
A) Cabo de elevação (hoist rope)
- Mais de um ramo de cabo para elevação de carga: 6 x 25 Filler, alma de fibra (AF), torção regualr, pré-formado, ou 6 x 36 Warrington-Seale, alma de fibra (AF), torção regular, pré- formado. Se o cabo estiver sujeito a amassamentos no tambor, usar as mesmas especificações acima com alma de aço (AACI).
- Apenas um cabo de elevação da carga: 18 x 7, alma de fibra (AF), não rotativo, pré-formado. B) Cabo de elevação da lança (boom hoist rope) 6 x 25 Filler, alma de aço (AACI), torção regular, pré-formado. C) Cabo de rotação do quindaste (swing rope) 6 x 36 Warrington-Seale, alma de aço (AACI), torção regular, pré-formado. D) Tirantes (guys) 6 x 7, alma de aço (AA), galvanizado, torção regular, pré-formado.
Figura 2.39.Figura 2.39.Figura 2.39.Figura 2.39.Figura 2.39. Guindaste estacionário (derrick).
A) Cabo para levantar cargas frias (hoist rope) Até diâmetro 3/8”, inclusive, 6 x 37 Warrington, alma de fibra (AF), torção regular, pré-formado. Maior que o diâmetro de 3/8”, 6 x 41 Warrington-Seale, alma de fibra (AF), torção regular, pré-formado. B) Cabo de levantar cargas quentes (hoist rope) As mesmas construções do item A, mas necessário com alma de aço (AACI). Observações:
- Para instalações com força lateral excessiva, ou trabalhando em atmosfera corrosiva, utilizar cabo 6 x 31 Warrington-Seale, alma de fibra (AF) ou alma de aço (AACI), torção regular, pré- formado.
- Nas instalações que possuam dois ou mais cabos independentes, poderá ser utilizada a metade com torção regu- lar à direita e a outra metade com torção regulara à esquerda. FFFFFigura 2.40.igura 2.40.igura 2.40.igura 2.40. Ponte rolante (overhead traveling crane).igura 2.40.
A
B
A
B
A) Cabo de tração (hoist rope) 8 x 19 Seale, alma de fibra (AF), torção regular, pré-formado, lubrificação especial, resistência dos arames própria para elevadores. B) Cabo de sustentação (compensation rope) 8 x 19 Seale, alma de fibra (AF), torção regular, pré-formado, resistência dos arames própria para elevadores. C) Cabo de freio de segurança (governor rope) 8 x 19 Warrington, alma de fibra (AF), torção regular, pré- formado ou 8 x 19 Seale, alma de fibra (AF), torção regular, pré- formado. Figura 2.41.Figura 2.41.Figura 2.41.Figura 2.41.Figura 2.41. Elevadores (elevators).
A
C
B
A
C
B