



Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
A história da porcentagem, começando por sua origem no século i a.c. Em roma, onde era utilizada para cobrar impostos sobre as vendas. O texto explica como a base para o cálculo de porcentagens foi fixada no valor de 100 e como o símbolo atual ainda não era utilizado pelos comerciantes. Além disso, são apresentados alguns exemplos práticos de cálculos com porcentagens. O documento também inclui questões para estudos e referências bibliográficas.
Tipologia: Notas de estudo
1 / 7
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Formação Continuada Nova EJA
Plano de Ação II, Unidades 3 e 4.
Nome: Julio Martins Moreira
Regional: Campo Grande, Grupo D.
Tutor: Maria Elisabete de Lima Fernandes Borges
Relatos históricos datam que o surgimento dos cálculos percentuais aconteceu por volta do século I A.C., na cidade de Roma. Nesse período, o imperador romano decretou inúmeros impostos a serem cobrados, de acordo com a mercadoria negociada. Um dos impostos criados pelos chefes romanos era denominado centésimo rerum venalium, e obrigava o comerciante a pagar um centésimo pela venda das mercadorias no mercado. Naquela época, o comércio de escravos era intenso e sobre as vendas era cobrado um imposto de 1/25 (um vinte e cinco avos). Os cálculos eram feitos sem a utilização do símbolo de porcentagem, eram realizados de forma simples, com a utilização de frações centesimais. Por exemplo, na cobrança de um imposto no valor de 6/100 da comercialização, eles cobravam seis centésimos do preço do produto, isto é, dividiam o produto em cem partes iguais e pegavam seis partes, basicamente o que é feito hoje sem a utilização de calculadoras. A intensificação do comércio por volta do século XV criou situações de grande movimentação comercial. O surgimento dos juros, lucros e prejuízos obrigou os matemáticos a fixarem uma base para o cálculo de porcentagens. A base escolhida foi o 100. O interessante é que mesmo com essa evolução, o símbolo que conhecemos hoje ainda não era utilizado pelos comerciantes. Muitos documentos encontrados e registrados apresentam uma forma curiosa de expressar porcentagens. Os romanos utilizavam os algarismos do seu sistema de numeração seguido de siglas como, “p cento” e “p c”. Por exemplo, a porcentagem de 10% era escrita da seguinte forma: “X p cento” ou “X p c”. A crescente utilização da porcentagem no comércio e as suas inúmeras formas de escrita representacional originaram o símbolo que conhecemos hoje, %. Atualmente, a porcentagem é estritamente importante para a Matemática financeira, dando suporte às inúmeras movimentações financeiras, na representação do mercado de ações envolvendo as operações de compra e venda, na construção de gráficos comparativos, qualitativos e quantitativos, na constituição de alíquotas de diversos impostos entre inúmeras outras situações.
Unidade 1
Unidade 2
A melhor forma de assimilar os conteúdos inerentes à porcentagem é com a utilização de exemplos que envolvem situações cotidianas. Acompanhe os exemplos a seguir:
Exemplo 1
Uma mercadoria é vendida em, no máximo, três prestações mensais e iguais, totalizando o valor de R$ 900,00. Caso seja adquirida à vista, a loja oferece um desconto de 12% sobre o valor a prazo. Qual o preço da mercadoria na compra à vista?
Podemos utilizar a razão centesimal ou o número decimal correspondente. 12% = 12/100 = 0,
Utilizando razão centesimal 12/100 x 900 = 12x900/100 = 1080/100 = 10800/100 = 108 reais 900 – 108 = 792 reais
Utilizando número decimal 0,12 x 900 = 108 reais 900 – 108 = 792 reais
A utilização de qualquer procedimento fica a critério próprio, pois os dois métodos chegam ao resultado de forma satisfatória e exata. No caso do exemplo 1, o desconto no pagamento à vista é de R$ 108,00, portanto o preço é de R$ 792,00.
Exemplo 5
Calcular os juros simples produzidos por R$40.000,00, aplicados à taxa de 36% a.a., durante 125 dias.
Temos: J = P.i.n A taxa de 36% a.a. equivale a 0,36/360 dias = 0,001 a.d. Agora, como a taxa e o período estão referidos à mesma unidade de tempo, ou seja, dias, poderemos calcular diretamente: J = 40000.0,001.125 = R$5000,
Exemplo 6
Qual o capital que aplicado a juros simples de 1,2% a.m. rende R$3.500,00 de juros em 75 dias?
Temos imediatamente: J = P.i.n ou seja: 3500 = P.(1,2/100).(75/30) Observe que expressamos a taxa i e o período n em relação à mesma unidade de tempo, ou seja, meses. Logo, 3500 = P. 0,012. 2,5 = P. 0,030; Daí, vem: P = 3500 / 0,030 = R$116.666,
Exemplo 7
Se a taxa de uma aplicação é de 150% ao ano, quantos meses serão necessários para dobrar um capital aplicado através de capitalização simples?
Objetivo: M = 2.P Dados: i = 150/100 = 1, Fórmula: M = P (1 + i.n) Desenvolvimento: 2P = P (1 + 1,5 n) 2 = 1 + 1,5 n n = 2/3 ano = 8 meses
Papel para realizar as atividades juntamente com calculadora e jornais com venda de objetos a prazo, com e sem juros.
VERIFICAÇÃO DO APRENDIZADO
Ao final dos 30 minutos de cada atividade pedir que cada grupo apresente suas respostas a turma, após promover um grande debate, dando a oportunidade que os alunos troquem ideias.
Questões retiradas do ENEM, vestibulares e concursos, que contemple uma habilidade pretendida nesta unidade. Avaliação individual. Anexo 1
BIBLIOGRAFIA UTILIZADA.
Vieira Sobrinho, José Dutra – Matemática Financeira – Ed. Atlas - 1997 Faria, Rogério Gomes de – Matemática Comercial e Financeira – 5ª ed. – Ed.Makron Books – 2000 Mathias,Washington F. & Gomes, José M. - Matemática Financeira - Ed. Atlas 1995 Assaf Neto, Alexandre – Matemática Financeira e suas aplicações – 5ª ed. – Ed. Atlas – 2000
4. (Enem PPL 2013) O tipo mais comum de bebida encontrado nos supermercados não é o suco, mas o néctar de frutas. Os fabricantes de bebida só podem chamar de suco os produtos que tiverem pelo menos 50% de polpa, a parte comestível da fruta. Já o néctar de frutas é mais doce e tem entre 20% e 30% de polpa de frutas. Superinteressante , São Paulo, ago. 2011.
Uma pessoa vai ao supermercado e compra uma caixa de 1 litro de bebida. Em casa ela percebe que na embalagem está escrito “néctar de frutas com 30% de polpa”. Se essa caixa fosse realmente de suco, necessitaria de um aumento percentual de polpa de, aproximadamente, a) 20%. b) 67%. c) 80%. d) 167%. e) 200%.