Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Exercícios de Regra de Três Simples e Composta, Exercícios de Cálculo

Regra de três composta – Este tipo de cálculo de regra de três envolve mais de duas grandezas proporcionais. Exercícios de fixação da definição:.

Tipologia: Exercícios

2022

Compartilhado em 07/11/2022

Aquarela
Aquarela 🇧🇷

4.5

(791)

224 documentos

1 / 13

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Exercios de Regra de Ts Simples e Composta
Definição
Regra de três é o cálculo ou processo matemático utilizado para resolver problemas que
envolvam duas ou mais grandezas diretas ou grandezas inversamente proporcionais.
O problema que envolve somente duas grandezas diretamente é mais comumente chamado
deregra de três simples.
Exercício de fixação da definição:
Um automóvel percorre um espaço de 480 Km em 02 horas. Quantos kms ele percorrerá em 06
horas?
Grandeza 1: Distância percorrida
Grandeza 2: Tempo necessário
Cálculo:
Distância 1 = 480 Km - 02 horas
Distância 2 = ? Km - 06 horas
01 hora percorrida = 240 km
06 horas percorrida = 240 Km x 6
Resultado: 1440 Kms
Método mais prático de solução da regra de três simples
Faça um X na equação, pegue o primeiro número de cima (480) e multiplique pelo segundo
número de baixo (06) depois é só dividir pelo número que restou (02) - O que você deseja saber
está em Km, portanto a resposta será em Km
480 km - 02 horas
X
? km - 06 horas
Resp: ? = 480 . 06 / 02 = 1440 Km
Regra de três composta Este tipo de cálculo de regra de três envolve mais de duas grandezas
proporcionais.
Exercícios de fixação da definição:
1) Se 20 homens trabalhando durante 15 dias constroem 500 metros de um muro, quantos
homens serão necessários para construir mais 1000 metros deste muro em 30 dias?
pf3
pf4
pf5
pf8
pf9
pfa
pfd

Pré-visualização parcial do texto

Baixe Exercícios de Regra de Três Simples e Composta e outras Exercícios em PDF para Cálculo, somente na Docsity!

Exercícios de Regra de Três Simples e Composta

Definição

Regra de três é o cálculo ou processo matemático utilizado para resolver problemas que envolvam duas ou mais grandezas diretas ou grandezas inversamente proporcionais.

O problema que envolve somente duas grandezas diretamente é mais comumente chamado de regra de três simples.

Exercício de fixação da definição:

Um automóvel percorre um espaço de 480 Km em 02 horas. Quantos kms ele percorrerá em 06 horas?

Grandeza 1: Distância percorrida

Grandeza 2: Tempo necessário

Cálculo:

Distância 1 = 480 Km - 02 horas

Distância 2 =? Km - 06 horas

01 hora percorrida = 240 km

06 horas percorrida = 240 Km x 6

Resultado: 1440 Kms

Método mais prático de solução da regra de três simples

Faça um X na equação, pegue o primeiro número de cima ( 480 ) e multiplique pelo segundo número de baixo ( 06 ) depois é só dividir pelo número que restou ( 02 ) - O que você deseja saber está em Km, portanto a resposta será em Km

480 km - 02 horas

X

? km - 06 horas

Resp:? = 480. 06 / 02 = 1440 Km

Regra de três composta – Este tipo de cálculo de regra de três envolve mais de duas grandezas proporcionais.

Exercícios de fixação da definição:

  1. Se 20 homens trabalhando durante 15 dias constroem 500 metros de um muro, quantos homens serão necessários para construir mais 1000 metros deste muro em 30 dias?

Grandeza 1 : Número de homens trabalhando

Grandeza 2 : Tempo de duração do trabalho

Grandeza 3 : Tamanho do muro

  1. Se 10 carros consomem em 05 dias a quantidade de 1000 litros de gasolina, quantos carros usaremos para consumir somente 500 litros de gasolina no espaço de 02 dias??

Grandeza 1: Número de carros

Grandeza 2: Número de dias

Grandeza 3: Quantidade combustível

Método mais prático de solução da regra de três composta

Faça a comparação da grandeza que irá determinar com as demais grandezas. Se esta grandeza for inversa, invertemos os dados dessa grandeza das demais grandezas.

A grandeza a se determinar não se altera, então, igualamos a razão das grandezas e determinamos o valor que se procura.

Veja:

  1. Na alimentação de 02 bois, durante 08 dias, são consumidos 2420 kgs de ração. Se mais 02 bois são comprados, quantos quilos de ração serão necessários para alimentá-los durante 12 dias.

Assim: serão necessários 7260 Kgs de ração

  1. Se 10 metros de um tecido custam R$ 50,00, quanto custará 22 metros?

Solução: O problema envolve duas grandezas (quantidade de tecidos e preço da compra)

Assim: 22 metros custarão R$ 110,

  1. Em 06 dias de trabalho, 12 confeiteiros fazem 960 tortas. Em quantos dias 04 confeiteiros poderão fazer 320 tortas

c) Quantos dias levará para o relógio ficar atrasado 45 minutos?

14 – Quero ampliar uma foto 3 x 4 (3 cm de largura e 4 cm de comprimento) de forma que a nova foto tenha 10,5 m de largura. Qual será o comprimento da foto ampliada?

15 – Uma foto mede 2,5 cm por 3,5 cm e se quer ampliá-la de tal maneira que o lado maior meça 14 cm. Quanto deve medir o lado menor da foto ampliada?

16 – Duas piscinas têm o mesmo comprimento, a mesma largura e profundidades diferentes. A piscina A tem 1,75 m de profundidade e um volume de água de 35 m3. Qual é o volume de água da piscina B, que tem 2 m de profundidade?

17 – Uma roda de automóvel dá 2750 voltas em 165 segundos. Se a velocidade permanecer constante, quantas voltas essa roda dará em 315 segundos?

18 – A combustão de 48 g de carbono fornece 176 gás carbônico. A combustão de 30 g de carbono fornece quantos gramas de gás carbônico?

19 – Num mapa, a distância Rio-Bahia, que é de 1.600 km, está representada por 24 cm. A quantos centímetros corresponde, nesse mapa, a distância Brasília-Salvador, que é de 1200 km ?

20 – Sabendo-se que, para cada 5 fitas de música brasileira, tenho 2 fitas de música estrangeira, quantas fitas de música brasileira eu tenho se possuo 22 fitas estrangeiras?

21 – Duas piscinas têm a mesma largura e a mesma profundidade e comprimentos diferentes. Na piscina que tem 8 m de comprimento, a quantidade de água que cabe na piscina é de 45. litros. Quantos litros de água cabem na piscina que tem 10 m de comprimento?

22 – Em uma prova de valor 6, Cristina obteve a nota 4,8. Se o valor da prova fosse 10, qual seria a nota obtida por Cristina?

23 – Uma vara de 3 m em posição vertical projeta uma sombra de 0,80 m. Nesse mesmo instante, um prédio projeta uma sombra de 2,40 m. Qual a altura do prédio?

24 – Uma tábua de 2 m, quando colocada verticalmente, produz uma sombra de 80 cm. Qual é a altura de um edifício que, no mesmo instante, projeta uma sombra de 12 m?

25 – Uma tábua com 1,5 m de comprimento foi colocada verticalmente em relação ao chão e projetou urna sombra de 53 cm. Qual seria a sombra projetada no mesmo instante por um poste que tem 10,5 m de altura?

26 – Se 3/7 da capacidade de um reservatório correspondem a 8.400 litros, a quantos litros correspondem 2/5 da capacidade do mesmo tanque?

27 – Uma circunferência, com 8 cm de diâmetro, tem 25,1 cm de comprimento. Qual é o comprimento de outra circunferência que tem 14 cm de diâmetro?

28 – Uma folha de alumínio tem 400 cm2 de área e tem uma massa de 900 g. Qual será, em g, a massa de uma peça quadrada, da mesma folha de alumínio, que tem 40 cm de lado? ( Determine a área da peça quadrada ).

29 – Para azulejar uma parede retangular, que tem 6,5 m de comprimento por 3 m de altura, foram usados 390 azulejos. Quantos azulejos iguais a esses seriam usados para azulejar uma parede que tem 15 m2 de área?

30 – Sabe-se que 100 graus aferidos na escala Celsius (100°C) correspondem a 212 graus aferidos na escala Fahrenheit (212°F). Em Miami, nos Estados Unidos, uma temperatura, lida no termômetro Fahrenheit, registrou 84,8 graus. Qual é a temperatura correspondente se lida no termômetro Celsius?

31 – Com 4 latas de tinta pintei 280 m2 de parede. Quantos metros quadrados poderiam ser pintados com 11 latas dessa tinta?

32 – Um corredor de Fórmula 1 manteve, em um treino, a velocidade média de 153 km/h. Sabendo-se que 1 h = 3 600 s, qual foi a velocidade desse corredor em m/s?

33 – A velocidade de um móvel é de 30m/s, Qual será sua velocidade em km/h?

34 – Para fazer um recenseamento, chegou-se à seguinte conclusão: para visitar 102 residências, é necessário contratar 9 recenseadores. Numa região em que existem 3 060 residências, quantos recenseadores precisam ser contratados?

35 – O ponteiro de um relógio de medição funciona acoplado a uma engrenagem, de modo que 4 voltas completas da engrenagem acarretam uma volta completa no mostrador do relógio. Quantas voltas completas, no mostrador do relógio, o ponteiro dá quando a engrenagem dá 4. voltas?

36 – O ponteiro menor de um relógio percorre um ângulo de 30 graus em 60 minutos. Nessas condições, responda :

a) Quanto tempo ele levará para percorrer um ângulo de 42 graus?

b) Se O relógio foi acertado às 12 horas ( meio-dia ), que horas ele estará marcando?

37 – Uma rua tem 600 m de comprimento e está sendo asfaltada. Em seis dias foram asfaltados 180 m da rua Supondo-se que o ritmo de trabalho continue o mesmo, em quantos dias o trabalho estará terminado?

38 – Um muro deverá ter 49 m de comprimento. Em quatro dias, foram construídos 14 m do muro. Supondo-se que o trabalho continue a ser feito no mesmo ritmo, em quantos dias será construído o restante do muro?

39 – Um automóvel percorreu uma distância em 2 horas, à velocidade média de 90 km por hora. Se a velocidade média fosse de 45 km por hora, em quanto tempo o automóvel faria a mesma distância?

40 – Com a velocidade de 75 km/h, um ônibus faz percurso em 40 minutos. Devido a um pequeno congestionamento, esse ônibus fez o percurso de volta em 50 minutos. Qual a velocidade média desse ônibus no percurso de volta?

41 – Para transportar material bruto para uma construção, foram usados 16 caminhões com capacidade de 5 cm^3 cada um. Se a capacidade de cada caminhão fosse de 4 cm^3 , quantos caminhões seriam necessários para fazer o mesmo serviço?

42 – Com o auxílio de uma corda, que julgava ter 2 m de comprimento, medi o comprimento de um fio elétrico e encontrei 40 m. Descobri, mais tarde, que a corda media na realidade, 2,05 m. Qual é o comprimento verdadeiro do fio?

59 – Com velocidade média de 60 km/h, fui de carro de uma cidade A para uma cidade B em 16 min. Se a volta foi feita em 12 minutos, qual a velocidade média da volta?

60 – ( MACK – SP ) Uma engrenagem de 36 dentes movimenta outra de 48 dentes. Quantas voltas dá a maior enquanto a menor dá 100 voltas?

61 – Um caminhão percorre 1.116 km em 6 dias, correndo 12 horas por dia. Quantos quilômetros percorrerá 10 dias, correndo 14 horas por dia?

62 – Uma certa máquina, funcionando 4 horas por dia, fabrica 12.000 pregos durante 6 dias. Quantas horas por essa máquina deveria funcionar para fabricar 20.000 pregos em 20 dias?

63 – Um ciclista percorre 75km em 2 dias, pedalando 3 horas por dia. Em quantos dias faria uma viagem 200 km, pedalando 4 horas por dia?

64 – Foram empregados 4 kg de fio para tecer 14 m de fazenda de 0,8 m de largura. Quantos quilogramas serão precisos para produzir 350 m de fazenda com 1,2 m de largura?

65 – Em 30 dias, uma frota de 25 táxis consome 100.000 l de combustível. Em quantos dias uma frota de 36 táxis consumiria 240.000 de combustível?

66 – Um folheto enviado pela Sabesp informa que uma torneira, pingando 20 gotas por minuto, em 30 dias, ocasiona um desperdício de 100 l de água. Na casa de Helena, uma torneira esteve pingando 30 gotas por minuto durante 50 dias. Calcule quantos litros de água foram desperdiçados.

67 – Numa fábrica de calçados, trabalham 16 operários que produzem, em 8 horas de serviço diário, 240 pares de calçados. Quantos operários São necessários para produzir 600 pares de calçados por dia, com 10 horas de trabalho diário?

68 – Meia dúzia de datilógrafos preparam 720 páginas em 18 dias. Em quantos dias 8 datilógrafos, com a mesma capacidade dos primeiros, prepararão 800 páginas?

69 – Para erguer um muro com 2,5 m de altura e 30 m de comprimento, certo número de operários levou 24 dias. Em quantos dias esse mesmo número de operários ergueria um muro de 2 m de altura e 25 m de comprimento?

70 – Um automóvel, com velocidade média de 60 km/h, roda 8 h por dia e leva 6 dias para fazer certo percurso. Se a sua velocidade fosse de 80 km/h e se rodasse 9 horas por dia, em quanto tempo ele faria o mesmo percurso?

71 – Dois carregadores levam caixas do depósito para um caminhão. Um deles leva 4 caixas por vez e demora 3 minutos para ir e voltar. O outro leva 6 caixas por vez e demora 5 minutos para ir e voltar. Enquanto o mais rápido leva 240 caixas, quantas caixas leva o outro?

72 – O consumo de 8 lâmpadas, acesas durante 5 horas por dia, em 18 dias, é de 14 quilowatts. Qual será o consumo em 15 dias, deixando apenas 6 dessas lâmpadas acesas durante 4 horas por dia?

73 – Em 6 dias, 6 galinhas botam 6 ovos. Quantos ovos botam 12 galinhas em 12 dias?

74 – Se 5 gatos pegam 5 ratos em 5 minutos, 100 gatos pegam 100 ratos em quantos minutos?

75 – ( UNIV. BRASíLIA ) Com 16 máquinas de costura aprontaram 720 uniformes em 6 dias de trabalho. Quantas máquinas serão necessárias para confeccionar 2.160 uniformes em 24 dias?

76 – ( USP – SP ) Uma família composta de 6 pessoas consome em 2 dias 3 kg de pão. Quantos quilos de pão serão necessários para alimentá-la durante 5 dias, estando ausentes 2 pessoas?

77 – ( CEFETQ – 1991 ) Quinze operários trabalhando oito horas por dia, em 16 dias, constroem um muro de 80 metros de comprimento. Em quantas horas por dia, 10 operários construirão um muro de 90 metros de comprimento, da mesma altura e espessura do anterior, em 24 dias?

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias?

79 – ( CEFETQ – 1996 ) Uma frota de caminhões percorreu 3 000 km para transportar uma mercadoria, com velocidade média de 60 km/h, gastando 10 dias. Quantos dias serão necessários para que, nas mesmas condições, uma frota idêntica percorra 4 500 km com uma velocidade média de 50 km/h?

80 – ( CEFETQ – 1997 ) Há 40 dias, um torneira na casa de Neilson está apresentando um vazamento de 45 gotas por minuto. Se um vazamento de 20 gotas por minuto, apresentado pela mesma torneira, desperdiça 100 litros de água em 30 dias, calcular o número de litros de água já desperdiçados na casa de Neilson.

81 – ( EsPECEx – 1981 ) Se 12 recenseadores visitam 1440 famílias em 5 dias de trabalho de 8 horas por dia, quantas famílias serão visitadas por 5 recenseadores, em 6 dias, trabalhando 4 horas por dia?

82 – ( EsPECEx – 1982 ) Um grupo de jovens, em 16 dias, fabricam 320 colares de 1,20 m de cada. Quantos colares de 1,25 m serão fabricados em 5 dias?

83 – ( EsPECEx – 1983 ) Um trem percorreu 200 km em certo tempo. Se tivesse aumentado sua velocidade em 10 km/h, teria percorrido essa distância em 1 hora menos. Determinar a velocidade do trem, em km/h.

Regra de Três – Questões Objetivas

84 – Se 4 máquinas fazem um serviço em 6 dias, então 3 dessas máquinas farão o mesmo serviço em:

a) 7 dias b) 8 dias c) 9 dias d) 4,5 dias

85 – Um quilo de algodão custa R$ 50,00. Um pacote de 40 gramas do mesmo algodão custa :

a) R$ 1,80 b) R$ 2,00 c) R$ 2,20 d) R$ 2,

86 – Um litro de água do mar contém 25 gramas de sal. Então, para se obterem 50 kg de sal, o número necessário de litros de água do mar será:

a) 200 b) 500 c) 2 000 d) 5 000

87 – Um avião percorre 2 700 km em quatro horas. Em uma hora e 20 minutos de vôo percorrerá:

a) 675 km b) 695 km c) 810 km d) 900 km

88 – Na fabricação de 20 camisetas, 8 máquinas gastam 4 horas. Para produzir 15 dessas camisetas, 4 máquinas gastariam quantas horas?

c) R$ 26.560,00. d) R$ 29.440,

98 – ( SANTA CASA – SP ) Sabe-se que 4 máquinas, operando 4 horas por dia, durante 4 dias, produzem 4 toneladas de certo produto Quantas toneladas do mesmo produto seriam produzidas por 6 máquinas daquele tipo, operando 6 horas por dia, durante 6 dias?

a) 8 b) 15 c) 10,5 d) 13,

99 – ( FEP – PA ) Para asfaltar 1 km de estrada, 30 homens gastaram 12 dias trabalhando 8 horas por horas por dia. Vinte homens, para asfaltar 2 km da mesma estrada, trabalhando 12 horas por dia, gastarão :

a) 6 dias. b) 12 dias. c) 24 dias. d) 28 dias.

100 – ( PUCCAMP-SP ) Operando 12 horas por dia horas, 20 máquinas produzem 6000 peças em 6 dias. Com 4 horas a menos de trabalho diário, 15 daquelas máquinas produzirão 4. peças em:

a) 8 dias b) 9 dias

c) 9 dias e 6 horas. d) 8 dias e 12 horas.

101 – ( USP – SP ) Uma família de 6 pessoas consome em 2 dias 3 kg de pão. Quantos quilos serão necessários para alimentá-lo durante 5 dias estando ausentes 2 pessoas?

a) 3 quilos b) 4 quilos c) 5 quilos d) 6 quilos

102 – ( Unimep – SP ) Se dois gatos comem dois ratos em dois minutos, para comer 60 ratos em 30 minutos são necessários:

a) 4 gatos b) 3 gatos c) 2 gatos

d) 5 gatos e) 6 gatos

102 – ( FAAP – SP ) Numa campanha de divulgação do vestibular, o diretor mandou confeccionar cinqüenta mil folhetos. A gráfica realizou o serviço em cinco dias, utilizando duas máquinas de mesmo rendimento, oito horas por dia. O diretor precisou fazer nova encomenda. Desta vez, sessenta mil folhetos. Nessa ocasião, uma das máquinas estava quebrada. Para atender o pedido, a gráfica prontificou-se a trabalhar 12 horas por dia, executando o serviço em :

a) 5 dias b) 8 dias c) 10 dias d) 12 dias

103 – ( PUC Campinas 2001 ) Em uma fábrica, constatou-se que eram necessários 8 dias para produzir certo nº de aparelhos, utilizando-se os serviços de 7 operários, trabalhando 3 horas a cada dia. Para reduzir a dois dias o tempo de produção, é necessário :

a) triplicar o nº de operários

b) triplicar o nº de horas trabalhadas por dia

c) triplicar o nº de horas trabalhadas por dia e o nº de

operários

d) duplicar o nº de operários

e) duplicar o nº de operários e o número de horas

trabalhadas por dia

104 – ( UNICAMP 2001. ) Uma obra será executada por 13 operários (de mesma capacidade de trabalho) trabalhando durante 11 dias com jornada de trabalho de 6 horas por dia. Decorridos 8 dias do início da obra 3 operários adoeceram e a obra deverá ser concluída pelos operários restantes no prazo estabelecido anteriormente. Qual deverá ser a jornada diária de trabalho dos operários restantes nos dias que faltam para a conclusão da obra no prazo previsto?

a) 7h 42 min

b) 7h 44 min

c) 7h 46 min

d) 7h 48 min

e) 7h 50 min

105 – ( CEFET – 1990 ) Uma fazenda tem 30 cavalos e ração estocada para alimentá-los durante 2 meses. Se forem vendidos 10 cavalos e a ração for reduzida à metade. Os cavalos restantes poderão ser alimentados durante:

a) 10 dias b) 15 dias c) 30 dias

d) 45 dias e) 180 dias

106 – ( CEFETQ – 1980 ) Em um laboratório de Química, trabalham 16 químicos e produzem em 8 horas de trabalho diário, 240 frascos de uma certa substância. Quantos químicos são necessários para produzir 600 frascos da mesma substância, com 10 horas de trabalho por dia?

a) 30 b) 40 c) 45 d) 50

107 – ( Colégio Naval – 1995 ) Se K abelhas, trabalhando K meses do ano, durante K dias do mês, durante K horas por dia, produzem K litros de mel; então, o número de litros de mel produzidos por W abelhas, trabalhando W horas por dia, em W dias e em W meses do ano será :

a) b) c) d) e)

Respostas dos Exercícios de Regra de Três Simples e Composta

  1. 40 kg
  2. 14 sacas
  3. 42 litros
  4. 60 min
  5. 60 minutos = 1 hora
  6. 8 máquinas
  7. 702 litros
  8. 77 caixas
  9. 532 km
  10. 15 litros
  1. 15 dias
  2. 16 dias
  3. 4 dias
  4. 216 caixas
  5. 7 kw
  6. 24 ovos
  7. 5 min
  8. 12 máquinas
  9. 5 kg
  10. 9 horas
  11. 1.800 toneladas
  12. 18 dias
  13. 300 litros
  14. 360 famílias
  15. 480 colares
  16. 5 horas
  17. letra d
  18. letra b
  19. letra c
  20. letra d
  21. letra b
  22. letra c
  23. letra b
  24. letra c
  25. letra d
  26. letra c
  27. letra c
  28. letra b
  29. letra a
  30. letra a
  31. letra d
  32. letra c
  33. letra a
  34. letra c
  35. letra a
  36. letra e
  37. letra d
  38. letra d
  39. letra d
  40. letra e