Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

euf2024 para estudar, Provas de Física

Questões do euf 2024 para estudar

Tipologia: Provas

2024

Compartilhado em 06/05/2025

vinicius-pimenta-16
vinicius-pimenta-16 🇧🇷

1 documento

1 / 26

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
0121345
001023451678 93 399 39 53
01 2 3
012345
4
012 345678924 3592 282 1 8 2
2924 79223452 182 94 3494 9
82 5812 492 42 49 322 81 8
2452 292 4 3594 122 4 12
345678924 3592 8922 52 67892 392
49 279257 91 8 9 3494 12
2 782 2
M
791 341 432 257829
ω
1 92 393829 924
R
1 4954 4 35
94 4 9!5784 894 24
a=3R
"82 9 2 432 9484
ω
3494 292 8 912521 1 92
393829 1 4954 4 3594 4 9!5784#
a
R
M
M
M
ω=q3GM
a3
$
ω=q3GM
2a3
%
ω=q3GM
a3
&
ω=q2GM
3a3
'
ω=qGM
3a3
01 5 3
012346
4
012 345678924 3592 282 1 8 2
2924 79223452 182 94 3494 9
82 5812 492 42 49 322 81 8
2452 292 4 3594 122 4 12
345678924 3592 8922 52 67892 392
49 279257 91 8 9 3494 12
2 782 2
M
791 341 432 257829
ω
1 92 393829 924
R
1 4954 4 35
94 4 9!5784 894 24
a=3R
"82 9 4 3419154
a
4 24 4 9
!5784 292 8 3494 912521 1
92 393829 1 4954 4 3594 4 9!5784#
a
R
M
M
M
a=3GM
ω2
1
3
$
a=3GM
2ω2
1
3
%
a=3GM
ω2
1
3
&
a=2GM
3ω2
1
3
'
a=GM
3ω2
1
3
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a

Pré-visualização parcial do texto

Baixe euf2024 para estudar e outras Provas em PDF para Física, somente na Docsity!

   M       ω        R         !     a =

3 R

"          ω                            !#

a

R

M

M

M

 (^) ω =

q 3 GM a^3 $ ω =

q 3 GM 2 a^3

% ω =

q (^) √ 3 GM a^3 & ω =

q 2 GM 3 a^3

' (^) ω =

q GM 3 a^3

   M       ω        R         !     a =

3 R

"         a     !                        !#

a

R

M

M

M

 a =

( 3 GM

ω^2

$ a =

( 3 GM

2 ω^2

% a =

3 GM ω^2

& a =

( 2 GM

3 ω^2

' a =

( GM

3 ω^2

    L = 30 cm    (     ρ = 5,0 g/cm^3   M = 5,0 kg        )   *+    1 ,0 g/cm^3 , -          .                  ( )             h             "              #

H 2 O

h

mercadoria

barra

L L

    L = 40 cm    (     ρ = 3,0 g/cm^3   M = 6,0 kg        )   *+    1 ,0 g/cm^3 , -          .                  ( )             h             "              #

H 2 O

h

mercadoria

barra

L L

9     )9      L

     M     

  )9      k    ! L/ 3    .         .              9  θ = 0 :  g                 ;              ;    +              9  θ ≪ 1   cos θ ≈ 1 − 12 θ^2 sin θ ≈ θ

3

1 L

3

2 L

k

M



<<     !     E = 12 M L^2

h θ˙^2 + (^ g L +^

k 9 M

θ^2

i 

<<<        ω =

q g L +^

k 9 M 

"     .      #

      ;  << <<<       $ (^) 4 (       % (^)       <      &      ;  < <<<       '     <          <<  

  

8           9     )9      L      M          ( )       )9      k    ! 2 L/ 5    .         .             9  θ = 0 :  g                 ;              ;    +              9  θ ≪ 1  cos θ ≈ 1 − 12 θ^2 sin θ ≈ θ

5

2 L

5

3 L

k

M



<<     !     E = 12 M L^2

h θ˙^2 +

( (^) g L +^

4 k 25 M

θ^2

i 

<<<        ω =

q g L +^

4 k 25 M 

"     .      #

      ;  << <<<       $ 4 (       % (^)       <      & (^)      ;  < <<<       ' (^)     <          <<  

  m 1 = 2M              H             *,        .   +    9   m 1      9   m 2 = M                 9    +             *,

H (^) h

m 1

m 2

(a) (b)

"      . h               H# %             m 2        )9 

 h = 49 H $ h = 23 H

% h = 13 H & h = 19 H

' h = 89 H

  m 1 = 3M              H             *,        .   +    9   m 1      9   m 2 = M                 9    +             *,

H (^) h

m 1

m 2

(a) (b)

"      . h               H# %             m 2        )9 

 (^) h = 169 H $ (^) h = 34 H

% (^) h = 14 H & (^) h = 161 H

' (^) h = 163 H

     E = κr^3 ˆr  κ      "        ρ   #

 (^) ρ = 5κǫ 0 r^2 $ (^) ρ = 5πκǫ 0 r^2

% (^) ρ = 10κǫ 0 r^2 & (^) ρ = 10πκǫ 0 r^2

' (^) ρ = 4πκǫ 0 r^2

       xy                   C   R 1 R 2 > R 1           *  ,          I 0      (         *R 2 ,      *z > 0 , 8         C   

  = μ^04 I 0 ( (^) R^11 + (^) R^12 )ˆz

$  = 0 %  = − μ^04 I 0 ( (^) R^11 + (^) R^12 )ˆz

&  = μ^04 I 0 ( (^) R^11 − (^) R^12 )ˆz ' (^)  = μ^04 I 0 ( (^) R^12 − (^) R^11 )ˆz

       xy                   C   R 1 R 2 > R 1           *  ,          I 0      (         *R 2 ,      *z > 0 , 8         C   

 (^)  = μ^04 I 0 ( (^) R^12 − (^) R^11 )ˆz

$ (^)  = 0 %  = μ^04 I 0 ( (^) R^11 − (^) R^12 )ˆz

&  = μ^04 I 0 ( (^) R^11 + (^) R^12 )ˆz

'  = − μ^04 I 0 ( (^) R^11 + (^) R^12 )ˆz

   9   (ρ,ϕ,z) = 12 C 0 ρ ϕˆ  C 0     %     (ρ,ϕ,z)C  '      .                  #

 (^) (ρ,ϕ,z) = C 0 ˆzC        $ (^) (ρ,ϕ,z) = 14 C 0 ρ^2 ˆzC  .     9   % (ρ,ϕ,z) = C 0 ϕˆC        & (ρ,ϕ,z) = 12 C 0 ϕˆC    .       ' (ρ,ϕ,z) = C 0 ϕˆC    .      

   9   (ρ,ϕ,z) = −C 0 ln (ρ/a)ˆz  C 0 a     %     (ρ,ϕ,z)C  '      .                  #

 (ρ,ϕ,z) = C ρ^0 ϕˆC  .     9  

$ (^) (ρ,ϕ,z) = C 0 ( a ρ ) ˆϕC  .     9  

% (ρ,ϕ,z) = C ρ^0 ϕˆC    .      

& (ρ,ϕ,z) = C 0 ( a ρ )ˆzC       

' (ρ,ϕ,z) = C 0 ρˆzC       

                 zˆ            *μ = μ 0 , (    8             .  (z,t) = E 0 exp[i(kz − ωt)](ˆx + 3ˆy)  k = 1, 8 × 107 −^1  ω = 3, 6 × 1015 D) E 0    % E       vf  C   9     n      C      (z,t)       )    c = 3, 0 × 108 F

 (^) vf = 2, 0 × 108 FC n = 1, 5 C (z,t) = − kE ω 0 exp[i(kz − ωt)](3ˆx − ˆy) $ (^) vf = 2, 0 × 108 FC n = 1, 5 C (z,t) = kE ω 0 exp[i(kz − ωt)](3ˆx + ˆy) % vf = 5, 0 × 108 FC n = 6, 0 C (z,t) = − kE ω 0 exp[i(kz − ωt)](3ˆx − ˆy) & vf = 5, 0 × 108 FC n = 6, 0 C (z,t) = kE ω 0 exp[i(kz − ωt)](3ˆx + ˆy) ' vf = 1, 5 × 108 FC n = 2, 0 C (z,t) = kE ω 0 exp[i(kz − ωt)](ˆx − 3ˆy)

             zˆ            *μ = μ 0 , (    8             .  (z,t) = E 0 exp[i(kz − ωt)](2ˆx − yˆ)  k = 1, 2 × 107 −^1  ω = 3, 0 × 1015 D) E 0    % E       vf  C   9     n      C      (z,t)       )    c = 3, 0 × 108 F

 (^) vf = 2, 5 × 108 FC n = 1, 2 C (z,t) = kE ω 0 exp[i(kz − ωt)](ˆx + 2ˆy) $ vf = 2, 5 × 108 FC n = 1, 2 C (z,t) = kE ω 0 exp[i(kz − ωt)](ˆx − 2ˆy) % vf = 4, 0 × 108 FC n = 7, 5 C (z,t) = − kE ω 0 exp[i(kz − ωt)](ˆx + 2ˆy) & vf = 4, 0 × 108 FC n = 7, 5 C (z,t) = − kE ω 0 exp[i(kz − ωt)](ˆx − 2ˆy) ' vf = 7, 5 × 108 FC n = 4, 0 C (z,t) = kE ω 0 exp[i(kz − ωt)](2ˆx + ˆy)

          D            

    L          a (a ≪ L) 8          .     8            N              I(t) = I 0 cos ωt "       ) ε )   #

 (^) ε = ωμ^0 I^0 N D

2 L sin^ ωt $ ε = ωμ^0 I^0 N D

2 L cos^ ωt % ε = μ^0 I^0 N^

(^2) D 2 L^2 sin^ ωt & ε = μ^0 I^0 N^ (πa

(^2) ) L cos^ ωt ' (^) ε = μ^0 I^0 N^

(^2) (πa (^2) ) L^2 sin^ ωt

    T 0    v 0        .          G +         

u = RcT − a v

 R a c      8  )          v 0 vf = 3v 0              Tf  8 ( W )               Tf  

 W = 0 Tf = T 0 − (^3) v^20 aRc  $ (^) W = 0 Tf = T 0 + (^3) v^20 aRc 

% (^) W = RT ln

3 v 0 −b v 0 −b

  • (^32) va 0 Tf = T 0 

& W = 0 Tf = T 0 

' (^) W = RT ln

3 v 0 −b v 0 −b

  • (^32) va 0 Tf = T 0 − (^3) v^20 aRc 

 *CV = 32 R ,  )     9

 (^) Wciclo = P 0 V 0 (ln 4 − 1) $ Wciclo = P 0 V 0 (ln 4 + 1) % Wciclo = P 0 V 0 (ln 4 − 2) & Wciclo = P 0 V 0  ' Wciclo = −P 0 V 0 

 *CV = 32 R ,  )     9

 Wciclo = P 0 V 0 (ln 27 − 2) $ Wciclo = P 0 V 0 (ln 27 + 2) % (^) Wciclo = P 0 V 0 (ln 9 − 2) & (^) Wciclo = 2P 0 V 0  ' (^) Wciclo = − 2 P 0 V 0 

    %     )                *     (    ,        P 0       Pf > P 0  : N,V               S U  F H    !           D ( )           9    )                    E



( ∂T

∂P

S,N 

( ∂T

∂P

V,N 

( ∂T

∂P

U,N 

( ∂T

∂P

F,N 

( ∂T

∂P

H,N 

     *     (    ,      V 0    

Vf > V 0  : N,P                S U  F H    !           D ( )      9    )                    E

( ∂T

∂V

S,N 

( ∂T

∂V

P,N 

( ∂T

∂V

U,N 

( ∂T

∂V

F,N 

( ∂T

∂V

H,N 

    '             /I% "      

3J ^2 # %                

 103 G $ 102 G % 101 G & 100 G ' 10 −^1 G

5        S     ;  x = −a x = +a  . x .           S′    )      . x  S      v     x     <              ;   S′E

< 8       .;         S′ <<   !     2 a/

p 1 − v^2 /c^2   c      ) <<<    x = +a .      x = −a

       <<<     $      ;  << <<<     %       <     &       <<     '    ;  < <<    

    5        S     ;  x = −a x = +a  . x .           S′    )      . x  S      v     x     <              ;   S′E

< 8       .;         S′ <<   !     2 a

p 1 − v^2 /c^2   c      ) <<<    x = +a .      x = −a

      ;  << <<<     $       <     % (^)       <<     & (^)       <<<     ' (^)    ;  < << <<<    

    H             K                           (       60 ◦          "   .            # *8  E  h/mc = 2   h      52 m       c      )  ,

 (^) 300 2 L $ (^) 30 2 L % (^) 10 2 L & (^) I0 2 L ' (^) K00 2 L

    H             7                           (       60 ◦          "   .            # *8  E  h/mc = 2   h      52 m       c      )  ,

 700 2 L $ 30 2 L % 10 2 L & I0 2 L ' K00 2 L

   : + |n〉 *n = 0, 1 , 2 ,...,  n           ( @ H       D    H|n〉 = ℏω(n + 1/2)|n〉  ω       9     :                   1 , 5 ℏω        .      *L,   *M,             

  • , 8           n = 1
  • , 8      )       n = 1
  • , 8        (1/

 L M L M

$ L M M M

% M L M M

& L L L M

' M M M L

   : + |n〉 *n = 0, 1 , 2 ,...,  n           ( @ H       D    H|n〉 = ℏω(n + 1/2)|n〉  ω       9     :                   1 , 5 ℏω        .      *L,   *M,             

  • , 8             n = 1
  • , 8      )       n = 1
  • , 8        (1/

 M M L L

$ L M L L

% M M L M

& M M M L

' L L L M

      )  Sα *α = x,y,z,               "    9   3F7            Sz    Sα = (ℏ/2)σα  σα     )   5   M   :(    9   3F7  +                  z 8       9      t         

1 2

( (^) iωt/ 2 √ 3 −iωt/^2

 ω         8           x z   〈Sx〉 〈Sz 〉                    .

 8      〈"〉                 !           〈Sz 〉    $ 8      〈"〉        . x    !       x     〈Sx〉    % 8      〈"〉               〈Sz 〉   −ℏ/ 2 +ℏ/ 2  & 8      〈"〉           +ℏ/ 2          ' 8      〈"〉           +ℏ/ 2    . x