



























Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Este documento explica como resolver sistemas lineares utilizando a regra de cramer e o método de gauss. Inclui-se exemplos e explicações passo a passo. Além disso, discute-se a complexidade computacional associada aos métodos e como obter a matriz triangular superior.
Tipologia: Notas de estudo
1 / 35
Esta página não é visível na pré-visualização
Não perca as partes importantes!
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
$ [= E
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
7HRULFDPHQWHpermitem calcular a VROXomR(ou soluções) H[DFWD (s) usando um númeroILQLWR de operações aritméticas elementares.
1DSUiWLFD, devido aos erros de arredondamento, cancelamento subtractivo,... permitem apenas a uma VROXomRDSUR[LPDGD.
([HPSORV: Regra de Cramer, Eliminação de Gauss, Decomposição /8, Método de Choleski.
A solução é definida como umOLPLWHGHXPDVXFHVVmR(LQILQLWD) de vectores.
1DSUiWLFD, calcula-se apenas um número finito de vectores da sucessão, isto é, calcula-se um Q~PHURILQLWRGHLWHUDo}HV.
([HPSORV: Método de Jacobi, Método de Gauss-Seidel.
$
det $ ≠ 0
^ 1RTXHVHVHJXHGHVWHFDStWXORDVVXPLUHPRVTXHWRGRVRVVLVWHPDV VmR GHGLPHQVmRQ[QHGHWHUPLQDGRV`
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
2EVHUYDomR
A tabela seguinte compara os WHPSRV necessários à resolução de um sistema de equações lineares de dimensão Q[Q, num supercomputador Cray J90, utilizando o 0pWRGRGH(OLPLQDomRGH*DXVV ou a 5HJUDGH&UDPHU:
(VWUDWpJLD Transformar o sistema original
num sistema HTXLYDOHQWH , mas cuja matriz seja WULDQJXODU
'HILQLomR Dois sistemas de equações lineares dizem-se HTXLYDOHQWHV se possuírem
o mesmo conjunto de soluções.
&RPRWUDQVIRUPDU" Por uma sequência de operações elementares.
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
'HILQLomR São RSHUDo}HVHOHPHQWDUHV sobre as linhas de uma matriz as operações:
'HILQLomR Cada sistema de equações lineares $[= E tem associada a sua
PDWUL]DPSOLDGD (ou FRPSOHWD)
A matriz obtida da matriz ampliada do sistema $[= E, depois de se aplicarem operações elementares, é D PDWUL]DPSOLDGDGHXPVLVWHPDGHHTXDo}HVHTXLYDOHQWHao sistema original.
'HILQLomR Uma matriz diz-se HVFDORQDGDSRUOLQKDV(ou em escada de linhas) se:
O objectivo do 0pWRGRGHHOLPLQDomRGH*DXVV é REWHUXPDPDWUL]DPSOLDGDHP HVFDGD de linhas, a partir da matriz ampliada do sistema $[= E:
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
1DVHJXQGDOLQKD pode ser escolhido para SLYRW
e definimos o multiplicador,
e subtraindo à terceira linha a segunda, depois de multiplicada:
Assim obtivemos um sistema HTXLYDOHQWH ao original, mas cuja matriz é WULDQJXODU.
Basta agora resolver este sistema, por sucessivas substituições ascendentes:
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
7pFQLFDVGHVHOHFomRGHSLYRW
OLQKDV (com uma linha em posição inferior na matriz) de forma a obter um elemento SLYRWGLIHUHQWHGH]HUR.
ampliação dos HUURVGHDUUHGRQGDPHQWR. De facto, em cada passo de eliminação
se utilizarmos pivots próximos de zero obtemos PXOWLSOLFDGRUHVGHJUDQGH]D HOHYDGD, o que poderá originar SHUGDGHDOJDULVPRVVLJQLILFDWLYRV.
≈≈^ 3L 3 LYYRRWWDDoommRR 33DDUUFFLLDDOO
Nesta técnica escolhemos para pivot R HOHPHQWRTXHWLYHUPDLRUYDORUDEVROXWRQD FROXQDque estamos a considerar (entre as linhas que se encontram numa posição igual ou inferior)
Designa-se por SLYRWDomRSDUFLDO ou HVFROKDSDUFLDOGHSLYRW o processo de troca de linhas que conduz ao pivot nestas condições. Assim, no início do passo de eliminação N seleccionamos como SLYRW o elemento tal que:
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
≈≈ 3L 3 LYYRRWWDDoommRR SSDDUUFFLLDDOO FFRRPP HHVVFFDDOODD RRXX HHTTXXLLOOLLEEUUDDJJHHPP GGHH PPDDWWUULL]]HHVV
8PH[HPSOR Consideremos o sistema,
que tem como solução:
Usando aritmética decimal, com GtJLWRV e SLYRWDomRSDUFLDO, obtemos:
donde viria:
3RUTXr"
$VOLQKDVGDPDWUL]WrPHOHPHQWRVGHJUDQGH]DVPXLWRGLIHUHQWHV
e QHFHVViULRHTXLOLEUDUDJUDQGH]DGRVHOHPHQWRV
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
o seu HOHPHQWRGHPDLRUYDORUDEVROXWR.
Sejam esses elementos:
2EVHUYDomR
FDGDOLQKD tenha uma PDJQLWXGHUHODWLYDGH, antes de fazer a comparação para a possível troca de linhas.
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
Suponhamos que $ pode ser escrita duma maneira única na forma
sendo / uma matriz WULDQJXODULQIHULRU, cujos HOHPHQWRVGDGLDJRQDOVmRLJXDLVD
e 8 uma matriz WULDQJXODUVXSHULRU.
podemos GHFRPSRU o sistema original em GRLVVLVWHPDVWULDQJXODUHV:
Assim, após calculada a GHFRPSRVLomR /8da matriz $,
o sistema é resolvido por VXEVWLWXLomRGLUHFWD e, calculado ,
o sistema é resolvido por VXEVWLWXLomRLQYHUVD para obter [.
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
SRUH[HPSOR para o sistema,
GHSRLVGHHIHFWXDGDDGHFRPSRVLomR,
cuja solução é
cuja solução é a do sistema original:
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
SRUH[HPSOR para o mesmo sistema,
calculámos e
e portanto temos,
e a matriz triangular obtida pelo Método de Gauss dá-nos,
2EVHUYDomR
Se GHW $ z , o método de eliminação de Gauss é VHPSUHSRVVtYHO.
Mas a QHFHVVLGDGHGHWURFDUGHOLQKDV( provocada por algum D N NN^ ^ )
pode impossibilitar a construção anterior.
&RQWXGRH[LVWHPFHUWRVUHDUUDQMRV SHUPXWDo}HV GHOLQKDVSDUDRVTXDLVDLQGDp SRVVtYHOREWHUDVPDWUL]HV/ H 8 DWUDYpVGRSURFHVVRGHHOLPLQDomRGH*DXVV
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
≈≈ 0D 0 DWWUULL]]HHVV GGHH 33HHUUPPXXWWDDoommRR
Uma matriz quadrada de ordem Q é uma PDWUL]GHSHUPXWDomR se pode ser
obtida da matriz identidade de ordem Q por permuta de linhas ou de colunas.
Se 3 for uma matriz de SHUPXWDomRGHOLQKDV e $ uma matriz qualquer,
a PHVPDSHUPXWDomRGHOLQKDV que originou 3 a partir da matriz identidade.
que podemos GHFRPSRU nos GRLVVLVWHPDVWULDQJXODUHV:
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
Assim, quando L d M
e quando L !M
Além disso, como pretendemos que O (^) O (^) OQQ
De modo análogo se podem calcular os restantes elementos,
&DStWXOR±6LVWHPDVGH(TXDo}HV/LQHDUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
Esta formulação permite a construção do:
WDQWRHPPXOWLSOLFDo}HVFRPRHPVRPDV`