Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Teoría de Redes: Definición de Puertos, Diapositivas de Electrónica Digital y Analógica

La teoría de puertos en la teoría de redes eléctricas. Se detalla que un puerta tiene dos terminales, una tensión v y un flujo de corriente i que entra en el terminal positivo y sale del terminal negativo. Además, se presenta la resistencia de puerta Rp que caracteriza el puerta. Se mencionan diferentes componentes lineales en el contexto de los One-Ports. Se incluyen referencias a artículos relacionados.

Tipo: Diapositivas

2019/2020

Subido el 04/11/2020

omar9412
omar9412 🇨🇴

1 documento

1 / 150

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
recent progress in
WAVE DIGITAL AUDIO EFFECTS
Julius O. Smith III & Kurt James Werner!
Center for Computer Research in Music and Acoustics (CCRMA)
@ Stanford University, California, USA
[jos,kwerner]@ccrma.stanford.edu
!
keynote talk, international conf. on digital audio eects (DAFx-15)
Trondheim, Norway, 2 December 2015
RR1
R+R1
2R1
R+R1
e(t)
2R3
R2+R3
2R2
R2+R3
R2R3
R2+R3
R2R3
R2+R3
R4
T
2C
R4+T
2C1
R4
T
2C
R4+T
2C
z1
z1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Vista previa parcial del texto

¡Descarga Teoría de Redes: Definición de Puertos y más Diapositivas en PDF de Electrónica Digital y Analógica solo en Docsity!

recent progress in

WAVE DIGITAL AUDIO EFFECTS

Julius O. Smith III & Kurt James Werner Center for Computer Research in Music and Acoustics (CCRMA) @ Stanford University, California, USA [jos,kwerner]@ccrma.stanford.edu ! keynote talk, international conf. on digital audio effects (DAFx-15) Trondheim, Norway, 2 December 2015 RR 1 R+R 1 2 R 1 R+R 1 e(t) 2 R 3 R 2 +R 3 2 R 2 R 2 +R 3 R 2 R 3 R 2 +R 3 R 2 R 3 R 2 +R 3 R 4 T 2 C R 4 + T 2 C 1 R 4 T 2 C R 4 + T 2 C z 1 z 1

  • (^) DAFx organizing committee
  • (^) @ CCRMA
    • (^) Vaibhav Nangia & Jonathan Abel
    • (^) Ross Dunkel & Max Rest & Michael Olsen
    • (^) François Germain
  • (^) @ Politecnico di Milano
    • (^) Alberto Bernardini & Augusto Sarti

THANKS

Musicians like vintage stuff.

TWO APPROACHES TO MODELING VINTAGE GEAR

  • (^) No knowledge of circuit required
  • (^) Run test signals to characterize model
  • (^) Non-parametric model                    Nonlinear System Identification (“black box”)

TWO APPROACHES TO MODELING VINTAGE GEAR

  • (^) No knowledge of circuit required
  • (^) Run test signals to characterize model
  • (^) Non-parametric model
    • (^) Knowledge of circuit required
    • (^) No need to characterize system
    • (^) Parametric model                                     (^)             (^)     Nonlinear System Identification (“black box”) Physical Modeling (“white box”)

INTRODUCTION

1. tutorial review of WDF principles

2. recent theoretical progress in WDFs

3. WDF software overview and demo

INTRODUCTION

1. tutorial review of WDF principles

2. recent theoretical progress in WDFs

3. WDF software overview and demo

Everything You Always Wanted to Know About WDFs* (*But Were Afraid to Ask) research by DAFx folks (and new research intro by Kurt et al. @ CCRMA)

INTRODUCTION

2. recent theoretical progress in WDFs

Everything You Always Wanted to Know About WDFs* (*But Were Afraid to Ask) “Please, no more math!!!” “Just show us how to code it up…” research by DAFx folks (and new research intro by Kurt et al. @ CCRMA)

WDF approach involves: !

  • (^) introduction of free parameter (port resistance) at each port:
  • (^) introduction of wave variables:
  • (^) discretization of reactive elements (capacitors, inductors) using the Bilinear transformation:
  • (^) scattering at impedance mismatches
  • (^) resolve delay-free loops by tuning port impedances

WAVE DIGITAL FILTER BASICS

Rn > 0 , for each port n an = vn + Rnin b n = v n

R

n i n s c 1 z 1 1 + z 1 , c = 2/T (typically)

closely related to Digital Waveguides (DWG), where: !

  • (^) wave propagation characterized by physical transmission impedance
  • (^) introduction of wave variables:
  • (^) discretization of lumped impedances (bridge, nut, etc.) using the Bilinear transformation:
  • (^) scattering at impedance mismatches
  • (^) propagation delay decouples elements

WAVE DIGITAL FILTER BASICS

Rn > 0 , for each port n s c 1 z 1 1 + z 1 , c = 2/T (typically) v

n = (1/2)vn + (Rn/2)in v n = (1/2)vn (Rn/2)in

LUMPED SYSTEMS

Stefan Bilbao and Julius O. Smith III, “MUS420/EE367A Lecture 7D: Discrete-Time Lumped Models,” URL: https://ccrma.stanford.edu/~jos/NumericalInt/NumericalInt.html

“A lumped system is one in which the dependent

variables of interest are a function of time alone. In

general, this will mean solving a set of ordinary

differential equations ( ODE s).”

!

…as opposed to those where dependent variables are

also a function of space (PDEs)…

LUMPED SYSTEMS

Stefan Bilbao and Julius O. Smith III, “MUS420/EE367A Lecture 7D: Discrete-Time Lumped Models,” URL: https://ccrma.stanford.edu/~jos/NumericalInt/NumericalInt.html

“A lumped system is one in which the dependent

variables of interest are a function of time alone. In

general, this will mean solving a set of ordinary

differential equations ( ODE s).”

!

…as opposed to distributed systems where dependent

variables are also a function of space (PDEs)…

LUMPED ELEMENTS (acoustical)

Harry F. Olson, Dynamical Analogies , New York: D. Van Nostrand Company, Inc., 1943, p. 20

LUMPED ELEMENTS (mechanical rectilinear)

Harry F. Olson, Dynamical Analogies , New York: D. Van Nostrand Company, Inc., 1943, p. 20