Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Un texto preciso preguntas, Ejercicios de Banco de Datos Deductivos

Es algoritmo de la empresa están claramente establecidos

Tipo: Ejercicios

2023/2024

Subido el 25/05/2024

1 / 6

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
pf3
pf4
pf5

Vista previa parcial del texto

¡Descarga Un texto preciso preguntas y más Ejercicios en PDF de Banco de Datos Deductivos solo en Docsity!

KILO AE E EE El Teorema de BAYES se apoya en el proceso inverso al que hemos visto en el Teorema de la Probabilidad Total: Teorema de la probabilidad total: a partir de las probabilidades del suceso A (probabilidad de que llueva o de que haga buen tiempo) deducimos la probabilidad del suceso B (que ocurra un accidente). Teorema de Bayes: a partir de que ha ocurrido el suceso B (ha ocurrido un accidente) deducimos las probabilidades del suceso A (¿estaba lloviendo o hacía buen tiempo?), La fórmula del Teorema de Bayes es: Plan *PD/Ad EP (Ai *P (B/AD PráiB)= Tratar de explicar estar fórmula con palabras es un galimatías, así que vamos a intentar explicarla con un ejemplo. De todos modos, antes de entrar en el ejercicio, recordar que este teorema también exige que el suceso A forme un sistema completo. Primer ejemplo. El parte meteorológico ha anunciado tres posibilidades para el fin de semana: a) Que llueva: probabilidad del 50%. b) Que nieve: probabilidad del 30% c) Que haya niebla: probabilidad del 20%. Según estos posibles estados meteorológicos, la posibilidad de que ocurra un accidente es la siguiente: a) Si llueve: probabilidad de accidente del 20%. b) Si nieva: probabilidad de accidente del 10% c) Si hay niebla: probabilidad de accidente del 5%. Resulta que efectivamente ocurre un accidente y como no estabamos en la ciudad no sabemos que tiempo hizo (llovío, nevó o hubo niebla). El teorema de Bayes nos permite calcular estas probabilidades: Las probabilidades que manejamos antes de conocer que ha ocurrido un accidente se denominan "probabilidades a priori" (lluvia con el 50%, nieve con el 30% y niebla con el 20%). Una vez que incorporamos la información de que ha ocurrido un accidente, las probabilidades del suceso A cambian: son probabilidades condicionadas P (A/B), que se denominan "probabilidades a posteriori". Vamos a aplicar la fórmula: