Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Trabajos Prácticos de Matemática, Resúmenes de Análisis funcional

Los trabajos prácticos realizados por una alumna durante su tercer año de formación docente. Incluye la observación general de la institución educativa, el diseño de instrumentos de evaluación para temas como círculos, ecuaciones con una incógnita y relaciones entre variables, así como el desarrollo y resolución de ejercicios relacionados. El documento también hace referencia a la importancia de la planificación didáctica y el compromiso del docente con el aprendizaje y formación de los estudiantes. La descripción detalla los aspectos clave del documento, como la estructura, los temas abordados, las estrategias de enseñanza y evaluación, y la reflexión sobre la práctica docente.

Tipo: Resúmenes

2022/2023

Subido el 14/08/2024

gisela-vanina-furlan
gisela-vanina-furlan 🇦🇷

2 documentos

1 / 17

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
Trabajos Prácticos
Docentes:
Alumna:
AÑO: 2023
CURSO: 3° AÑO
OBSERVACIÓN GENERAL
Datos de identificación de la escuela
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Vista previa parcial del texto

¡Descarga Trabajos Prácticos de Matemática y más Resúmenes en PDF de Análisis funcional solo en Docsity!

Trabajos Prácticos

Docentes:

Alumna:

AÑO: 2023

CURSO: 3° AÑO

OBSERVACIÓN GENERAL

Datos de identificación de la escuela

Nombre : Colegio Mixto “Carlos Lorenzo Vergara” N° Tipo : Mixto Turno: Noche Horario: Lunes 19:10 hs a 20:40 hs Miércoles 20:10 hs a 21:10 hs Localidad : Diamante, Entre Ríos La Institución educativa se encuentra ubicada a unas pocas cuadras del centro de la ciudad de Diamante, abarca una manzana completa, a su alrededor encontramos el Hospital San José, la fábrica de jugos “Ernefa” y el supermercado “Dar”. Se ubica específicamente entre las calles Sarmiento y Urquiza. En lo que respecta a su infraestructura tenemos una escuela que cuenta con dos pisos en la cual en el turno mañana funciona la escuela secundaria, en el turno tarde en el primer piso funciona la escuela secundaria y en el segundo piso funciona el Instituto Superior Diamante. En el mismo edificio, sobre calle Tratado del Pilar y Urquiza funciona la Subsede Facultad de Ciencias y Tecnología.

Trabajo Práctico Individual: Evaluación  A partir de las microclases en el aula de práctica durante el año, diseña un instrumento de evaluación que refleje lo planificado y desarrollado  Los temas a evaluar son: a) - Circulo ( 3° Año) b) - Ecuaciones con una incógnita con números enteros ( 2° Año) c) - Relaciones entre variables ( 2° Año) Evaluación Tal como narran los autores de Cuarta Jornada Institucional(2019), que afirman: “La evaluación es una práctica donde se conjugan dos grandes perspectivas: la sumativa y la formativa. La formativa es aquella que centra su intervención en los procesos de manera que trata, desde su inicio, de incidir en su mejora, mientras que la sumativa es la evaluación focalizada en los resultados y que persigue el control de los mismos, reservándose la acción mejorada para futuras intervenciones”(pág. 5). La evaluación debe ser para los docentes una herramienta de trabajo que permita ver qué aprenden, qué no aprenden y por qué no aprenden los alumnos, cuáles son las causas que subyacen a los diferentes niveles de error e incorporar esta información para redireccionar el proceso de enseñanza. Es también una información vital para los alumnos, para que puedan ser conscientes de sus debilidades, no sentirlos como un fracaso sin solución, sino como un momento en el proceso de aprender ya que al conocerlos y asumirlos construyen una vía para la superación. (“Evaluación” Documento N° 4-Primera parte. CGE).

Desarrollo Actividades de Evaluación: a) Círculo

  1. Instrumento de Evaluación Se acreditarán los aprendizajes de los contenidos de este tema, en el cierre con una evaluación escrita, previamente avisados. Evaluación Nombre: Curso:
  1. Respondan y justifiquen las respuestas. a) ¿Es cierto que un ángulo inscripto y otro semi inscripto en el mismo arco tienen la misma medida? b) Si un ángulo inscripto en un arco mide 72°, ¿cuánto mide el ángulo central correspondiente?
  2. Determina la medida del ángulo x en el siguiente diagrama:
  3. El ángulo verde tiene su vértice en el centro del círculo. ¿Cuál es el valor de x?

ángulo central = 2×50° ángulo central = 100° 3- El ángulo verde con medida de x +50 es el ángulo central para el ángulo inscrito x ya que ambos intersecan el mismo arco. Por lo tanto, la medida del ángulo verde es el doble de la medida del ángulo rojo. Entonces, tenemos: 2 x = x + 50° x = 50°

Tenemos que el ángulo central mide 48°. Por el teorema de ángulos inscritos, tenemos: 2 x=48° Dividimos ambos lados por 2 para obtener: x=24° Puntajes :

  1. 2 puntos.
  2. 2 puntos
  3. 3 puntos
  4. 3 puntos b) Ecuaciones de primer grado con una incógnita Evaluación

Nombre: Curso: Plantear y resolver las siguientes ecuaciones

  1. Si al triple de un número le restamos 16 se obtiene 20. ¿Cuál es el número? (Ptje: 1)
  2. Pedro, que actualmente tiene 42 años, tiene 8 años más que el doble de la edad de Antonio. ¿Qué edad tiene Antonio? (Ptje:2)
  3. Al sumarle a un número 34 unidades se obtiene el mismo resultado que al multiplicarlo por 3. ¿Cuál es ese número? (Ptje:2)
  4. Calculen x. (Ptje: 3) a ) 2x – 8 = 18 b ) 3x+2=5x+ c ) 5x-15=4x+
  5. El padre de Andrés tiene 30 años más que él y su madre tiene 5 años menos que su padre. Averiguar la edad actual de Andrés sabiendo que la suma de las edades de sus padres es 7 veces la edad de Andrés. (Pje: 2) Solución:
  6. El número buscado es 12.
  7. La edad de Antonio es 17
  8. El número buscado es 17.
  9. a ) 2x – 8 = 18 2x = 18+ x = 26: 2

d) _____ Las coordenadas de C son (0,2). e) _____ Las coordenadas de I son (−2,4). f) _____ La ordenada de E es -2.

  1. Problema 1: “ Clara estaba haciendo unos arreglos en su casa y necesitaba pasar por una ferretería a buscar algunos materiales. Como ese día estaba en la casa de su amiga Ayelén, decidió salir desde allí hasta el negocio más cercano. Ambas amigas viven sobre la misma avenida, que cuenta con varias ferreterías. El siguiente gráfico muestra la distancia de Clara hasta su casa en función del tiempo transcurrido desde que salió de la casa de Ayelén:

Respondan las siguientes preguntas: a. ¿A qué distancia de su casa se encontraba Clara a los...

  • ...5 minutos?
  • ...27 minutos?
  • ...33 minutos? b. Durante el recorrido, ¿en qué momentos Clara se encontraba a 800 metros de su casa? c. ¿A qué distancia de la casa de Clara está la casa de Ayelén? d. La primera ferretería que visitó estaba cerrada. Esperó un momento pero no llegó nadie. ¿A qué distancia de la casa de Ayelén estaba este negocio? Solución:
  1. Representa y grafica, los puntos en el plano cartesiano. 𝐴 (−10,0), 𝐵(−7,5), 𝐶(0,5), 𝐷(−3, −5), 𝐸(6,3), 𝐹(8,0), 𝐺(10, −6), 𝐻(0, −7).
  1. Problema 1: “Clara estaba haciendo unos arreglos en su casa y necesitaba pasar por una ferretería a buscar algunos materiales. Como ese día estaba en la casa de su amiga Ayelén, decidió salir desde allí hasta el negocio más cercano. Ambas amigas viven sobre la misma avenida, que cuenta con varias ferreterías. El siguiente gráfico muestra la distancia de Clara hasta su casa en función del tiempo transcurrido desde que salió de la casa de Ayelén: Respondan las siguientes preguntas:

a. ¿A qué distancia de su casa se encontraba Clara a los...

  • ...5 minutos?
  • ...27 minutos?
  • ...33 minutos?  A los 5 minutos estaba a 800 m  A los 27 minutos estaba 700 m  A los 33 minutos 650 m b. Durante el recorrido, ¿en qué momentos Clara se encontraba a 800 metros de su casa? En este caso aparecerá un momento de tiempo que no se podrá identificar con exactitud. Clara está a 800 metros de su casa a los 5 minutos, pero también está a esa distancia aproximadamente a los 22 minutos y medio. Pero no estamos preguntando por los minutos. Los estudiantes también podrían responder, que estuvo a 800 metros de su casa en algún momento entre los 22 y los 23 minutos. c. ¿A qué distancia de la casa de Clara está la casa de Ayelén? Clara estaba a 500 metros de distancia de su casa, por lo tanto esa es la distancia entre ambas casas. d. La primera ferretería que visitó estaba cerrada. Esperó un momento pero no llegó nadie. ¿A qué distancia de la casa de Ayelén estaba este negocio? La distancia es de 700 metros, leyendo el valor de y en el gráfico,

 Effenberger, P. “Matemática 7" .-1a ed.-Bs. As. Kapelusz, 2012  Effenberger, P. “Matemática Activa 8 EGB”. 1° Año. Puerto de Palos. Cap. III. (Pag. 61).  Mabel Arnejo, Claudia Comparatore. (2017). Matemática III. Buenos Aires: Tinta Fresca.  Margarita Rodríguez, M. M. (2003). Matemática 9 EGB. Buenos Aires: McGraw-Hill Interamericana.  Matemática en red EGB 3° Ciclo. (2003). Buenos Aires: A-Z Editora S.A.  Nelly Vásquez de Tapia, Alicia Tapia de Bibiloni, Carlos Alberto Tapia. (1980). Matemática 3. Buenos Aires: Estrada.

Conclusión Final Al iniciar el periodo de práctica, se ponen en juego muchos de los conocimientos adquiridos en nuestra formación como futuros docentes durante los dos primeros años y en el transcurso del tercer año. Se apostaron a los conocimientos adquiridos en las cátedras de: Didáctica General, Elementos de las Matemáticas, Didáctica de las Matemáticas I y II, Práctica I y II. Tanto para los alumnos, para aprender un determinado tema, como para nosotros, como futuros docentes, es muy importante implementar estrategias que permitan conectar el conocimiento nuevo, con el conocimiento previo que fuimos adquiriendo a lo largo de estos tres años del profesorado. Es decir, como un objetivo general surge el proyectar durante nuestras prácticas los conocimientos teóricos y metodológicos adquiridos en el profesorado, así como las estrategias, recursos y técnicas para lograr cambios significativos tanto académicos como de conducta en los alumnos. A medida que fue transcurriendo el período de práctica me fui dando cuenta la importancia que tiene la planificación didáctica en el rol del docente. Es fundamental, ya que, al planificar una clase se deben tener en cuenta los objetivos de cada clase y seguidamente ver cómo podemos hacer, o qué recursos aplicar, para que ese objetivo se cumpla por medio de una serie de actividades que nos permiten evaluar si el objetivo se ha cumplido o no. Al planificar una clase, uno como docente, debe tener responsabilidad por lo que va enseñar y respeto por aquellos a quien va a enseñar, los alumnos. El seleccionar, por parte del docente, el contenido teórico y práctico adecuado para la clase habla de la responsabilidad y compromiso que uno como futuro docente deberá tener hoy y siempre para con los alumnos, para su aprendizaje, para su formación.