


Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
soluciones electroliticas para determinar los potenciales electricos de las reacciones
Tipo: Apuntes
1 / 4
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
H 2 O+e-^ <-> 1/2H 2 +OH-^ -0.828Volt (Anode) 1/2H 2 <-> H+^ + e-^ 0 volt (Cathode)
H 2 O <->H +^ +OH-^ -0.828Volt
(b) Calculate the molalities of H+^ and OH-^ in deionized water at 298K. Show calculation step by step and state all assumptions made.
Note that ε is related to mole fractions of H +^ and OH -^ by the following equations assuming that the activity coefficients of the species are 1:
Eq. 1 2
( , ) exp( ) l^1
o H OH H H OH OH r p H O
a a m m (^) G K T P a RT
Assuming γ (^) H + = γ OH −= 1 ,
( , ) exp( ) 1
o H OH r p
m m (^) G K T P RT
Eq.2 − nF ε =∆ Gro.
From Eqs. 1 and 2, one can get Kw =[H+^ ][OH-^ ]=1.0x10-14^ at 298K. If pH=7, then [H+^ ]=[OH-^ ]=1.0x10-7^. Then, the molalities (mH+ and mOH-) and molarities ([H+^ ] and [OH- ]) of H+^ and OH-^ are identical, which is equal to 1.0x10-7^ mole per 1000g water.
The molality is the number of moles of solute present in 1000 grams of water while molarity is the number of moles of solute present in one liter of water. Note that 1000 grams is equivalent to one liter of water.
Pt O 2 (^) ( exhaust p , (^) eg ) ZrO 2 (^) + Y O O 2 3 2 ( air p , (^) air ) Pt
The electrode reaction that occurs at high temperature at both the anode-electrolyte and cathode-electrolyte interfaces is
O2 + 4e <=> 2O2- (a) Please write the governing equation for the cell potential as a function of pressures, P (^) eg and Pair.
If one assumes that Peg >Pair and Peg and Pair are the partial pressure of O 2 in the exhaust and the air, respectively, the potential generated by partial pressure difference is as follow:
log( ) air
eg P
nF
ε= −
Note that Pt electrodes in the air acts as a cathode due to higher partial pressure of O 2. Also, it is assumed that the activity coefficients are 1.
(b) What would the cell voltage be when the partial pressure of oxygen in the exhaust gas is 0.02atm? State all assumptions made in answering (a) -(b)
If we assume T=300K, Pair =0.21atm, then we get ε =− 8. 314 ⋅ 300 /( 4 ⋅ 96485 )⋅log( 0. 02 / 0. 21 )=15.2mV
(a) Initially will the cell produce a current against a resistive load? Explain.
A concentration cell produces a voltage as it attempts to reach equilibrium, which will occur when the concentration in both cells are equal. To reach this point, Cu2+^ ions in the concentrated solution (3.5molal solution) are reduced while oxidation increases Cu2+^ in the dilute solution. However, oxidation of Cl-1^ cannot occur since the standard potential of Cl-^ is higher than that of Cu2+^. Hence, released electrons from the anode by Cu2+^ oxidation can produce current passing through a resistive circuit. To satisfy the local electroneutrality, Cl -^ should migrate from the concentration cell through the membrane to the dilute cell. These reactions are represented as follow:
Electrode 1 reaction (Cathode, 3.5molal solution) Cu2+^ +2e-^ -> Cu(s) ε cathode = 0.337 V − RT /( nF ) log(1/ γ (^) Cu 2 + mCu 2 +)where activity coefficient is equal to 1.
Note that Cl 2 (g) (Cl 2 (g)+2e-^ -> 2Cl -^ ) is not available and hence reduction of Cu2+ only occurs in the cathode.
Electrode 2 reaction (Anode, 1molal solution)
2H+^ +2e-^ -> H (^2) Electrode 2 reaction (Cathode, 3.5molal solution) Cu2+^ +2e-^ -> Cu(s)
Potential between two electrodes can calculated as
( )
2 2
2
ln( ) 0.337 8.314^ /(^ ) 300 ln(1/ 2 ) 2 96485 /
O H Cu^ s H (^) Cu
RT a^ a J mol K K V Cu nF (^) P a C mol
ε ε γ
Hence, one can get γ value by measuring ε.