Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Optimización y simulación de reacciones enlazadas: Metanol y deshidrogenación IPA., Guías, Proyectos, Investigaciones de Procesos Químicos

El análisis teórico y la optimización de las condiciones de operación para obtener el rendimiento máximo en la sintesis de metanol y la deshidrogenación de IPA mediante la enlazada de reacciones exotérmicas y endotérmicas. El documento incluye estudios previos sobre el tema, el modelo matemático del reactor, y el resultado de la simulación y optimización de las reacciones enlazadas. Los autores han encontrado que la conversión de reacción es mayor en un reactor enlazado que en un reactor convencional adiabático y que las condiciones óptimas dan el máximo valor de conversión.

Tipo: Guías, Proyectos, Investigaciones

2020/2021

Subido el 14/06/2021

paula-villa-123
paula-villa-123 🇦🇷

5

(3)

2 documentos

1 / 7

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
Jurnal Teknik Kimia Indonesia Vol.
10,
No.
3,
201
1
,
127
-
127
SIMULATION AND OPTIMIZATION OF COUPLING
REACTION OF METHANOL SYNTHESIS AND ISOPROPYL
ALCOHOL DEHYDROGENATION
Jenny Rizkiana
1
, Yogi W. Budhi
2
, Azis Trianto
1
*
1
Energy and Chemical Engineering Processing System Research Group
2
Chemical Engineering Process Development Research Group
Chemical Engineering Program, Faculty of Industrial Technology
Institut Teknologi Bandung
Jalan Ganesha No 10, Bandung 40132, Indonesia
Email:
trianto
@che.itb.ac.id
Abstract
A study on simulation
and optimization
of coupling reaction
between methanol synthesis
and isopropyl alcohol (IPA) dehydrogenation was performed. The analysis is carried out
theoretically to obtain the optimum operation conditions which give the best performance.
The reactions are just interacting thermally. In this study, both
reactions are held
catalytically in a heat
-
exchanger type reactor. As a high pressure reaction, methanol
synthesis is placed in the inner side of reactor tube while dehydrogenation of IPA is in the
opposite. Tube wall acts as a heat transfer media. The re
actor is modeled by a steady state
heterogeneous equation for a fixed bed reactor. Optimization is done in order to find the
optimum value of operation conditions, those are the inlet temperature of both side of
reactor and the molar feed flow ratio betwee
n the exothermic side and the endothermic side.
Sum of weighted reaction conversion is considered to be the objective function that is
maximized. The simulation result shows that coupled reactor
makes the reaction conversion
higher
than a conventional adiabatic reactor and the optimum operation conditions give the
maximum value of the conversion. This study presents a theoretical proof that coupling
reaction is feasible.
Keywords:
coupling reaction
, IPA
dehydrogenation
, methanol synthesis
, optimization
,
simulated annealing
Abstrak
Telaah mengenai simulasi dan optimisasi
reaksi perangkaian
(
coupling reaction
) antara
sintesis metanol dengan dehidrogenasi isopropil alkohol (IPA) telah dilakukan. Analisis
dilaksanakan secara teoretik guna mendapatkan kondisi optimum yang a
kan memberikan
hasil terbaik. Pada penelitian ini, kedua reaksi dilaksanakan secara katalitik dalam reaktor
bertipe buluh
-
cangkang. Karena bertekanan tinggi, sintesis metanol ditempatkan pada sisi
buluh, sedangkan dehidrogenasi IPA
ditempatkan pada sisi cangkang. Dinding buluh
berperan sebagai media perpindahan panas. Reaktor dimodelkan dengan reaktor heterogen
tunak unggun tetap. Optimisasi dilakukan dalam rangka mendapatkan nilai optimum dari
kondisi operasi yang mencakup tempera
tur inlet sisi eksotermik dan endotermik serta rasio
umpan molarnya. Jumlah total konversi reaksi terbobotkan dipilih sebagai nilai objectif yang
akan dioptimumkan. Hasil simulasi menunjukkan bahwa reaktor perangkaian termal mampu
meningkatkan konversi rea
ksi jika dibandingkan dengan reaktor adiabatik dan pada kondisi
operasi yang optimum diperoleh konversi maksimal. Penelitian ini menunjukkan bahwa
reaksi perangkaian layak untuk dilaksanaka
n.
Kata
k
unci
:
reaksi perangkaian
,
dehidrogenasi IPA
, sintesis
methanol
, optimisasi
,
simulated
annealing
*
corresponding author
pf3
pf4
pf5

Vista previa parcial del texto

¡Descarga Optimización y simulación de reacciones enlazadas: Metanol y deshidrogenación IPA. y más Guías, Proyectos, Investigaciones en PDF de Procesos Químicos solo en Docsity!

Jurnal Teknik Kimia Indonesia Vol. 10, No. 3, 2011 , 127 - 133

SIMULATION AND OPTIMIZATION OF COUPLING

REACTION OF METHANOL SYNTHESIS AND ISOPROPYL

ALCOHOL DEHYDROGENATION

Jenny Rizkiana

1

, Yogi W. Budhi

2

, Azis Trianto

**1 ***

1

Energy and Chemical Engineering Processing System Research Group

2

Chemical Engineering Process Development Research Group

Chemical Engineering Program, Faculty of Industrial Technology

Institut Teknologi Bandung

Jalan Ganesha No 10, Bandung 40132, Indonesia

Email: trianto@che.itb.ac.id

Abstract

A study on simulation and optimization of coupling reaction between methanol synthesis

and isopropyl alcohol (IPA) dehydrogenation was performed. The analysis is carried out

theoretically to obtain the optimum operation conditions which give the best performance.

The reactions are just interacting thermally. In this study, both reactions are held

catalytically in a heat-exchanger type reactor. As a high pressure reaction, methanol

synthesis is placed in the inner side of reactor tube while dehydrogenation of IPA is in the

opposite. Tube wall acts as a heat transfer media. The reactor is modeled by a steady state

heterogeneous equation for a fixed bed reactor. Optimization is done in order to find the

optimum value of operation conditions, those are the inlet temperature of both side of

reactor and the molar feed flow ratio between the exothermic side and the endothermic side.

Sum of weighted reaction conversion is considered to be the objective function that is

maximized. The simulation result shows that coupled reactor makes the reaction conversion

higher than a conventional adiabatic reactor and the optimum operation conditions give the

maximum value of the conversion. This study presents a theoretical proof that coupling

reaction is feasible.

Keywords: coupling reaction, IPA dehydrogenation, methanol synthesis, optimization,

simulated annealing

Abstrak

Telaah mengenai simulasi dan optimisasi reaksi perangkaian ( coupling reaction ) antara

sintesis metanol dengan dehidrogenasi isopropil alkohol (IPA) telah dilakukan. Analisis

dilaksanakan secara teoretik guna mendapatkan kondisi optimum yang akan memberikan

hasil terbaik. Pada penelitian ini, kedua reaksi dilaksanakan secara katalitik dalam reaktor

bertipe buluh-cangkang. Karena bertekanan tinggi, sintesis metanol ditempatkan pada sisi

buluh, sedangkan dehidrogenasi IPA ditempatkan pada sisi cangkang. Dinding buluh

berperan sebagai media perpindahan panas. Reaktor dimodelkan dengan reaktor heterogen

tunak unggun tetap. Optimisasi dilakukan dalam rangka mendapatkan nilai optimum dari

kondisi operasi yang mencakup temperatur inlet sisi eksotermik dan endotermik serta rasio

umpan molarnya. Jumlah total konversi reaksi terbobotkan dipilih sebagai nilai objectif yang

akan dioptimumkan. Hasil simulasi menunjukkan bahwa reaktor perangkaian termal mampu

meningkatkan konversi reaksi jika dibandingkan dengan reaktor adiabatik dan pada kondisi

operasi yang optimum diperoleh konversi maksimal. Penelitian ini menunjukkan bahwa

reaksi perangkaian layak untuk dilaksanakan.

Kata kunci : reaksi perangkaian, dehidrogenasi IPA, sintesis methanol, optimisasi, simulated

annealing

*corresponding author

Jurnal Teknik Kimia Indonesia Vol. 10 , No. 3, 2011

1. Introduction

Thermally coupled reactor can be

considered as an effort to do energy

conservation. Exothermic reaction acts as a

heat source and endothermic reaction will be

a heat sink. Hunter and McGuire (1 978 ) were

the first to do the study about coupling of

exothermic and endothermic reaction. On

their patent, they suggested to use catalytic

combustion or other highly exothermic

reaction as a heat source for any endothermic

reaction.

Another study about reaction coupling

was done by Itoh and Wu (1997). They used

membrane reactor made from palladium to

carry out dehydrogenation of cyclohexane.

Produced hydrogen permeated trough reactor

wall and reacted with oxygen giving a huge

number energy to support the reactor itself,

so the operation can be done adiabatically.

Based on that study, Elnashaie et al. (2000)

utilized heterogeneous kinetic model to

simulate reaction coupling between

dehydrogenation of ethyl benzene to become

styrene and hydrogenation of benzene to

become cyclohexane. They focused the study

on the effect of co-current and counter-

current flow.

Khademi et al. (2009) chose to couple

dehydrogenation of cyclohexane and

methanol synthesis. They optimized the inlet

temperature for both side of reaction and

molar flow by using differential evolution

method optimization.

This study will couple methanol

synthesis and dehydrogenation of isopropyl

alcohol (IPA). Methanol is a multipurpose

base chemical. It is the simplest alcohol in the

world and can be produced by several ways.

Recently, most of methanol is made from

syngas (Elkamel et al., 2009). Conventional

reactor of methanol synthesis has very low

conversion because of the nature of its

equilibrium state. To accommodate the kinetic

and equilibrium constraint, methanol

synthesis should be conducted at relatively

low temperature and high pressure (Kirk-

Othmer, 1967).

IPA dehydrogenation process can be

viewed from two sides. First, IPA

dehydrogenation is an alternative route to

make acetone. Acetone made from IPA is free

from aromatic compound so that it is

preferred to use by pharmaceutical industries

which has very tight regulation about the

solvent they used (Turton et al., 2009).

Second, IPA dehydrogenation is a way to

produce hydrogen. Hydrogen is predicted to

be the future fuel because of its cleanness and

easy to use. Currently, most of hydrogen is

produced from natural gas via steam

reforming process. Due to the decrease of gas

reserve in the world, alternative route to

produce hydrogen must be made. Hydrogen

production from IPA dehydrogenation is very

potential since IPA itself can be made from

renewable resources by fermentation.

Conventional optimization methods are

mostly based on gradient method. From this

point, at least there are two weakness of this

method. First, they can easily trapped on local

optimum depends on the degree of

nonlinearity and initial guest (Khademi et al.,

2009). Secondly, they can handle non-

differentiable objective function, such as a

step function.

A number of optimization methods are

developed in order to solve the weakness of

conventional optimization method. One of

them is called simulated annealing (SA)

method. It proposed independently by

Kirkpatrick et al. (1983) and Cerny (1985).

This method started from implementing

Metropolis algorithm combined with

combinatorial optimization method and

statistical mechanic to analogize and optimize

annealing process. SA can be easily applied to

many optimization problems (Bertsimas and

Tsitsiklis, 1993).

1.1. Kinetics Model

Methanol synthesis actually consists of

three main reactions. They are carbon oxide

reduction and water-gas shift reaction as

follows:

CO + 2 H

2

⇄ CH

3

OH (1)

CO

2

+ 3 H

2

⇄ CH

3

OH + H

2

O (2)

CO

2

+ H

2

⇄ CO + H

2

O (3)

From those three reactions, only two

are independent; the one is a combination of

other ones. Van den Bussche and Froment

(1996) have proposed a kinetics model based

only from reaction (2) and (3) utilizing

Cu/ZnO/Al 2

O

3

as the catalyst as follows:

஼ை

௘,ଵ

ு మ

஼ு య

ைு

ு మ

஼ை మ

Jurnal Teknik Kimia Indonesia Vol. 10 , No. 3, 2011

Table 3. Auxiliary Correlation for Estimating Fluid Properties and Transport Coefficient

Parameter Correlation Reference

Heat capacity for pure

component

ܥ

= ܣ + ܤ ൬

ܥ

ܶ

sinh ൬

ܥ

ܶ

൘ ൰൰

  • ܦ ൬

ܧ

ܶ

cosh ൬

ܧ

ܶ

൘ ൰൰

Green and Perry, 2007

Mix heat cap. Based on local composition

Viscosity Chung correlation Reid et al., 1987

Mix viscosity Wilke correlation Reid et al., 1987

Thermal cond. Chung correlation Reid et al., 1987

Mix thermal cond. Korelasi Brokaw Reid and Sherwood, 1958

Mass transfer

coefficient

݇ ௚௜

= 1. 17 ܴ݁

ି ଴.ସଶ

ܿܵ

ି ଴.଺଻

ݑ ௚

× 10

ܴ݁ =

2 ܴ

ݑ

ߤ

ܿܵ

=

ߤ

ߩܦ

௜௠

× 10

ି ସ

ܦ

௜௠

=

1 − ݕ ௜

ݕ

ܦ

௜௝

௜ୀ௝

ܦ

௜,௝

=

10

ି ଻

ܶ

ଷ/ଶ

1

ܯ

1

ܯ

ܲ ቀݒ

௖௜

ଷ/ଶ

  • ݒ

௖௝

ଶ/ଷ

Cussler, 2009

Heat transfer

coefficient

1

ܷ

=

1

ܣ

ln

ܦ

ܦ

2 ߨܭ

ܮ

ܣ

ܣ

1

ℎ݀ ௣

ߣ

ቇ = 1. 17 ቆ

ݑߩ݀ ௣

ߤ

଴.ହ଼ ହ

ܥ ௣

ߤ

ߣ

ଵ/ଷ

McCabe et al., 1993

Sum of weighted reaction conversion is

considered to be the objective function.

Weighted factor for this study is the price of

each component. But, since price study hasn’t

finished yet, we assumed that weighted

factors are equals for all components.

Therefore, the objective function is just sum of

reaction conversion multiplied by (-1)

because most of optimization method require

an objective function to be minimized.

We classify this optimization problem

as a constrained problem. To make it as an

unconstrained one, a penalty function can be

added to the objective function. Penalty

function is function for penalizing the

objective function when the variable violates

its constraint. For example, if variable satisfy

the constraint, penalty function is zero;

otherwise, penalty function will be a finite

value. For this study, the penalty values are:

௡ ଶ

௜ୀଵ

Where

= max{ 0 , (ܶ

= max

଴ଶ

= max{ 0 , (ܶ

଴ଶ

= max

଴ଵ

= max{ 0 , (ܶ

଴ଵ

3. Result and Discussion

For a base case, all conditions of

methanol synthesis Van den Bussche and

Froment (1996) are used, excluding feed

composition since it is used from Sinadinovic-

Fiser et al. (2001). For IPA dehydrogenation,

reaction condition is taken from Rioux and

Vannice (2005).

Before the thermally coupled reactor is

simulated, first we have to simulate the

conventional adiabatic reactor. Figure 2

shows the effect of inlet temperature to the

yield of methanol. We can see that when

temperature increases, yield of methanol is

also increase. But at some point, methanol

yield will remain constant and then decrease.

This is because at low temperature, methanol

synthesis is controlled by kinetics. However,

as temperature increases, the reaction

changes to be thermodynamically controlled.

The effect of temperature to acetone

yield can be seen on figure 3. Since IPA

dehydrogenation is an endothermic reaction

and it is kinetically controlled, temperature

increase gives positive effect to the yield. The

higher temperature will make acetone yield

higher.

Simulation and Optimization of Coupling Reaction (J. Rizkiana, et al.)

Figure 2. Inlet temperature vs methanol

yield

As described before, optimization is

done in order to get the best conditions which

give the maximum conversion for both side of

reactor. Optimization process was carried out

using Simulated Annealing method. The

results are summarized in Table 4. All value

from optimization results is then used to

simulate the optimized coupled reactor.

Table 4. Optimized Condition for

Thermally Coupled Reactor

Parameter Value

Inlet temperature of

exothermic side (K) 525.

Inlet temperature of

endothermic side (K) 512.

Molar feed flow ratio 0.

Figure 3. Inlet temperatures vs. acetone

yield

Reactor simulation results carried out

by using optimized conditions are shown in

several figures. Figure 4 shows temperature

and yield profile for both side of reactor. From

figure 4 (a), we can see that temperature of

exothermic side is relatively remains constant.

It means that all heat generated from reaction

of methanol synthesis is absorbed and being

used by IPA dehydrogenation to maintain its

process.

As a highly endothermic reaction, IPA

dehydrogenation needs much energy. Energy

can come from additional heat sources or

from the system itself. If heat from additional

sources isn’t enough, reaction will use its

internal energy. It is marked by the decrease

of reactor temperature as shown on figure

4 (a) at earlier section of reactor (between 0

until 0.1). When reaction occurs, it needs a

huge number of energy, but when conversion

almost reaches 100% (reaction rate almost

zero), it doesn’t needs energy anymore (see

figure 4 (b)). So, the energy from methanol

synthesis is used to regain temperature.

(a)

(b)

Figure 4. Yield and temperature profile at

optimized condition; (a) temperature

profile, (b) yield profile

Figure 5 shows comparison between

endothermic side temperatures of optimized

coupled reactor (OCR) with temperature of

conventional adiabatic reactor (CAR) at the

same inlet condition. From that figure, it is

shown that by using OCR, maximum acetone

yield can be achieved quicker than by using

CAR. On the OCR, maximum acetone yield

achieved at about 0.1 lengths of reactor and

on the CAR at about 0.8 (see figure 6 ). It’s

because on OCR, IPA dehydrogenation gets

additional energy from methanol synthesis. It

is cleared that OCR gives better performance

than CAR.

0,

0,

0,

0,

0,

0,

0,

0,

470 480 490 500 510 520 530

methanol yield

temperature (K)

0

0,

0,

0,

0,

1

420 440 460 480 500 520

acetone yield

Temperature (K)

400

420

440

460

480

500

520

540

0 0,2 0,4 0,6 0,8 1

temperature (K)

reactor length

exothermic

endothermic

0

0,

0,

0,

0,

1

1,

0 0,2 0,4 0,6 0,8 1

yield

reactor length

acetone

methanol

Simulation and Optimization of Coupling Reaction (J. Rizkiana, et al.)

Elkamel, A.; Zahedi, G. R.; Marton, C.; Lohi, A.,

Optimal fixed bed reactor network

configuration for the efficient recycling of co

into methanol, Energies , 2009 , 2 (2), 180 - 189.

Elnashaie, S. S. E. H.; Moustafa, T.; Alsoudani,

T.; Elshishini, S. S., Modeling and basic

characteristics of novel integrated

dehydrogenation-hydrogenation membrane

catalytic reactors, Computers & Chemical

Engineering , 2000 , 24 (2-7), 1293 - 1300.

Han, Y.; Shen, J.; Chen, Y., Microkinetic analysis

of isopropanol dehydrogenation over Cu/SiO 2

catalyst, Applied Catalysis A: General , 2001 ,

Hunter, J. B.; McGuire, G., Method and

Apparatus for Catalytic Heat Exchange , US

Patent 925,862, 18 Juli 1978.

Itoh, N.; Wu, T., An adiabatic type of palladium

membrane reactor for coupling endothermic

and exothermic reactions, Journal of

Membrane Science , 1997 , 124(2), 213 - 222.

Khademi, M. H.; Setoodeh, P.; Rahimpour, M.

R.; Jahanmiri, A., Optimization of methanol

synthesis and cyclohexane dehydrogenation

in a thermally coupled reactor using

differential evolution (DE) method,

International Journal of Hydrogen Energy ,

Kirk-Othmer, Encyclopedia of Chemical

Technology ; John Wiley & Sons: New York,

Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P.,

Optimization by simulated annealing, Science ,

McCabe, W. L.; Smith, J. C.; Hariott , P., Unit

Operation of Chemical Engineering ; McGraw-

Hill: New York, 1993.

Sinadinovic-Fiser, S. V.; Jankovic, M. R.;

Radicevic, R. Z., Simulation of the fixed bed

reactor for methanol synthesis, Petroleum and

Coal , 2001 , 43 (1), 31 - 34.

Green, D. W.; Perry, R. H., Perry's Chemical

Engineers' Handbook ; McGraw-Hill: New

York, 2007.

Reid, R. C.; Prausnitz, J. M.; Poling, B. E., The

Properties of Gases and Liquids ; McGraw-Hill:

New York, 1987.

Reid, R. C.; Sherwood, T. K., The Properties of

Gases and Liquids: Their Estimation and

Correlation ; McGraw-Hill: New York, 1958.

Rioux, R. M.; Vannice, M. A., Dehydrogenation

of isopropyl alcohol on carbon-supported Pt

and Cu–Pt catalysts, Journal of Catalysis , 2005 ,

Turton, R.; Bailie, R. C.; Whiting, W. B.;

Shaeiwitz, J. A., Analysis, Synthesis, and Design

of Chemical Processes ; Prentice-Hall: New

Jersey, 2009.