



Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
En este documento se presentan una serie de ejercicios y problemas relacionados con métricas y normas en espacios métricos y vectoriales, incluyendo la verificación de las propiedades de positividad, simetría, desigualdad triangular e homogeneidad. Se consideran ejemplos y contraejemplos en espacios numéricos y de funciones.
Tipo: Ejercicios
1 / 6
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Let X = R, explain if and why, the following expressions are metrics on X:
(a) d(x, y) = x^2 + xy + y^2
(b)
d(x, y) =
|x − y| 1 + |x − y|
(c) d(x, y) = (1 + |xy|)|x − y|
(d) d(x, y) = max{ 1 , |x + y|}
(e) d(x, y) = max{ 0 , |x − y|}
Recall the definition of a Metric Space:
A metric space (X; d) is a (non-empty) space X with a metric d on X satisfying the following properties:
We need to show that either proposed metrics satisfy all of the listed properties and therefore are indeed metric spaces, or that at least one of the properties fails.
(a) • Checking Positivity: Consider f (x, y) = x^2 + xy + y^2 , this function is globally convex, and its minimum value is 0. However, x = y ≠⇒ d(x, y) = 0 Taking x = y:
d(x, y) = x^2 + xy + y^2 = x^2 + x^2 + x^2 = 3x^2 ̸= 0 −→ x = y ̸= 0
therefore the first property fails and the distance is not a metric on X.
Let X = R, explain if and why, the following function is a metric on X:
d(x, y) = { |x 1 − y 1 |, if x 1 ̸= x 2 |x 2 − y 2 |, if x 1 = x 2
We can show that positivity fails in this case by taking a case with x = (2, 2) and y = (0, 2). So, with x 1 ̸= x 2 we take: d(x, y) = |x 2 − y 2 | = | 2 − 2 | = 0
The distance is zero even though x ̸= y. So, it is not a metric space.
Check if the following functions are norms on X = R^3 :
(a) ||x|| = |x 3 | + max{|x 1 |, |x 2 |}
(b) ||x|| = max{|x 1 | + |x 3 |, |x 2 |}
Recall the definition of a Normed Linear Space:
A normed linear space X is a vector space X with a norm ||.|| (measure of the size of the elements) satisfying the following properties:
(a) • Positivity is ensured by considering that:
|x 1 | ≥ 0 , |x 2 | ≥ 0 , |x 3 | ≥ 0
we can also show that:
x = 0 =⇒ x 1 = 0, x 2 = 0, x 3 = 0 =⇒ ||x|| = 0
and ||x|| = 0 =⇒ x 3 = 0, max{|x 1 |, |x 2 |} = 0 =⇒ x 1 = 0, x 2 = 0
||αx|| = |αx 3 |+max{|αx 1 |, |αx 2 |} = |α||x 3 |+max{|α||x 1 |, |α||x 2 |}+|α||x 3 |+|α|max{|x 1 |, |x 2 |} =
= |α|(|x 3 | + max{|x 1 |, |x 2 |}) = |α|∥x∥
∥x + y∥ = ∥(x 1 + y 1 , x 2 + y 2 , x 3 + y 3 )∥ = |x 3 + y 3 | + max{|x 1 + y 1 |, |x 2 + y 2 |} ≤ |x 3 | + |y 3 | + max{|x 1 | + |y 1 |, |x 2 | + |y 2 |}} ≤ |x 3 | + |y 3 | + max{|x 1 | + |x 2 |}, max{|y 1 | + |y 2 |}} = ∥x∥∥y∥
Therefore the function is indeed a norm.
(b) • The first property is satisfied since:
|x 1 | ≥ 0 , |x 2 | ≥ 0 , |x 3 | ≥ 0
and moreover
∥x∥ =⇒ max{|x 1 | + |x 3 |, |x 2 |} = 0 =⇒ |x 1 | = |x 2 | = |x 3 | = 0 =⇒ x = 0
and x = 0 =⇒ x 1 = x 2 = x 3 = 0 =⇒ ∥x∥ = 0
∥αx∥ = max{|αx 1 | + |αx 3 |, |αx 2 |} = max{|α||x 1 | + |α||x 3 |, |α||x 2 |} =
= max{|α|(|x 1 | + |x 3 |), |α||x 2 |} = |α|max{|x 1 | + |x 3 |, |x 2 |} = |α|∥x∥
||x + y|| = max{|x 1 + y 1 | + |x 3 + y 3 |, |x 2 + y 2 |} ≤ max{|x 1 | + |y 1 | + |x 3 | + |y 3 |, |x 2 | + |y 2 |} ≤
≤ max{|x 1 | + |x 3 |, |x 2 |} + max{|y 1 | + |y 3 |, |y 2 |} = ||x|| + ||y|| Therefore the property is satisfied and the function is indeed a norm.
Determine whether the following function is a norm on C^2 (X) = {f : X → R : f is differentiable twice } where X = [0, 1]: ||f || = supx∈X {|f ”(x)|} + 2|f (0)|
Let us evaluate the positivity property. Strictly positivity is ensured by definition of absolute value, however the property fails because ||f || = 0 ≠⇒ f (x) = 0, ∀x ∈ X
we can see this by noticing that ||f || = 0 implies only that f ”(x) = 0 and f (0) = 0. For example, the function f (x) = x has f ′(x) = 1 =⇒ f ”(x) = 0 although f (x) ̸= 0