Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Ejercicio de cálculo vectorial, Apuntes de Ingeniería

Resuelto ejercicio 1 de la unidad

Tipo: Apuntes

2022/2023

Subido el 06/10/2023

edgardo-de-jesus-palacios-de-la-tor
edgardo-de-jesus-palacios-de-la-tor 🇨🇴

1 documento

1 / 6

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
TALLER 1 – ESTÁTICA DE PARTÍCULAS
PARA DESARROLLAR ESTE TALLER DEBE:
Formas grupo de máximo 3 estudiantes (pueden ser menos).
Usar el editor de ecuaciones de Word u otro procesador de ecuaciones profesional para presentar las
respuestas.
INTEGRANTES: NALLELY BARANDICA – MAURICIO PORTO – JAIRO TAPIA
PROBLEMA 1 (30%):
Una trabajadora ejerce una fuerza de 25 lb sobre la cuerda que se muestra en la figura para mantener la caja
en equilibrio y en su posición. ¿Cuál es el peso de la caja?
t1=25lb
α=5°
β=30 °
Fx=0
t2xsin αt1xcos β=0
t2xsin α=t1xcos β
t2x=t1xcos β
sin α
t2x=248.41lb
Fy=0
t2ycosαt1ysin βW=0
W=t2ycos αt1ysin β
W=248.41lbcos 5 °25 lbsin 30 °
W=234.96 lb
PROBLEMA 2 (30%):
La masa de 30 kg que se muestra en la figura está suspendida de tres cables. El cable AC está equipado con
pf3
pf4
pf5

Vista previa parcial del texto

¡Descarga Ejercicio de cálculo vectorial y más Apuntes en PDF de Ingeniería solo en Docsity!

TALLER 1 – ESTÁTICA DE PARTÍCULAS

PARA DESARROLLAR ESTE TALLER DEBE:  Formas grupo de máximo 3 estudiantes (pueden ser menos).  Usar el editor de ecuaciones de Word u otro procesador de ecuaciones profesional para presentar las respuestas. INTEGRANTES: NALLELY BARANDICA – MAURICIO PORTO – JAIRO TAPIA PROBLEMA 1 (30%): Una trabajadora ejerce una fuerza de 25 lb sobre la cuerda que se muestra en la figura para mantener la caja en equilibrio y en su posición. ¿Cuál es el peso de la caja? t 1 = 25 lb α = 5 ° β= 30 °

∑ F^ x=^0

t (^2) x∗sin α −t (^1) x∗cos β = 0 t (^2) x∗sin α=t (^1) x∗cos β t (^2) x= t (^1) x∗cos β sin α t (^2) x= 25 lb∗cos 30 ° sin 5 ° t (^2) x=248.41lb

∑ F^ y=^0

t (^2) y∗cos α−t (^1) y∗sin β−W = 0 W =t (^2) y∗cos α −t (^1) y∗sin β W =248.41lb∗cos 5 °− 25 lb∗sin 30 ° W =234.96 lb PROBLEMA 2 (30%): La masa de 30 kg que se muestra en la figura está suspendida de tres cables. El cable AC está equipado con

un torniquete, de manera que su tensión puede ajustarse, y un calibrador, que permite medir su tensión. Si la tensión en el cable AC es de 50 N, ¿cuáles son las tensiones en los cables AB y AD? ∑ Fx = TAC Cos 30º - TAB Cos 45º = 0 TAB = TAC ∑ Fx = TAC Cos 30º - TAB Cos 45º = 0 TAB = TAC ∑ Fx = TAC Cos 30º - TAB Cos 45º = 0 TAB = TAC T (^) AC= 50 N W =m∗g= 30 kg∗9. m s

2 =^294 N
ΔA D B

AB=α =tan

AB=β=tan

∑ F^ x=¿−T^ AB cos^58 °+T^ A D cos^36 °=^0 ¿

∑ F^ y=T^ AB sin^58 °+T^ AC sin^58 °+T^ AD sin^36 °−W^ =^0

T (^) AB (sin 58 ° −cos 58 °)+T (^) AC (cos 58 ° +sin 58 °)+T (^) AD ¿

TAB = - = TAB =

727,42 – 4,48 TAD

-0,529 (727,42 – 4,48 TAD)

+ 26,49 + 0,80 TAD = 0

−372.65+0.74 T AD +0.81 T AD = 0
1.55 T AD =372.
T AD=
T AD=240.42 N

∑ F^ y=T^ AB sin^58 °+T^ AC sin^58 °+T^ AD sin^36 °−W^ =^0

T AB 0. 84 +( 50 N )∗0.84 +( 240.42 N )∗0.58= 294 N
T AB 0.84= 294 N − 42 N−139.
T AB 0.84=112.
T AB=
T AB= 134 N

TAB

TAC Cos 30º × Sen 45º =

W Cos 45º - TAC Sen 30º ×

Cos 45º

TAC Cos 30º × Sen 45º +

TAC Sen 30º × Cos 45º =

W Cos 45º TAC (Cos 30º × Sen 45º + Sen 30º × Cos 45º) = W Cos 45º Sen (30º + 45º) Cumple con la propiedad de ángulos dobles. TAC Sen (30º + 45º) = W Cos 45º TAC = TAC = = 695,44 Lb PROBLEMA 3 (40%): Un técnico cambia la posición del banco de luces de 950 lb retirando el cable CE. ¿Cuál es la tensión en el cable AB después del cambio?