





Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Apuntes de teoría electromagnética
Tipo: Apuntes
1 / 9
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell
1. Covariant Geometry - We would like to develop a mathematical framework in which Special Relativity can be applied more naturally. - The Lorentz transformations were derived from Einstein's principle of relativity: c 2 t ' 2 − x ' 2 y ' 2 z ' 2 = c 2 t 2 − x 2 y 2 z 2 - This means that all the terms on the left always equal the same scalar no matter what frame of reference we are in. This value is invariant under Lorentz transformations. - In regular three-dimensional Galilean relativity, the dot product of two position vectors is invariant under transformations. Define the 4-vector (covariant) geometry as the set of rules that lead to the dot product of any two 4-vectors being invariant under Lorentz transformations. - If we designate the column 4-vector Aμ as a “covariant” vector (where covariant implies that its dot product does not change under Lorentz transformations), then to form a dot product we must multiply by a row vector. Let us write the row 4-vector as Aμ^ and call it a “contravariant” vector to imply that it is dotted against the covariant vector. - The label μ on the vector is an index that runs from 0 to 3, specifying the t , x , y , and z components of the 4-vector. Note the convention that when we are indexing a four-vector, we use Greek letters such as μ , ν, etc. , but when we are indexing a three-component vector, we use Latin letters such as i , j , k. - Using this notation, the dot product of two four-vectors looks like this: ∑ μ= 0 3 A μ A μ - Note that if we recognize two 4-vectors with the same index as a dot product, the summation symbol is unnecessary. We drop the summation symbol with the understanding that repeated indices always means summation over all values of the index (this is called Einstein notation). A μ A μ =∑ μ= 0 3 A μ A μ - Note that repeated indices only imply summation if they are on the same side of the equals sign. If they are on opposite sides, then repeated indices represent the matching up of components. - Assume we know the contravariant vector. What does its corresponding covariant vector look like? - Let us look at the spacetime coordinate 4-vector xμ^ = ( ct , x , y , z ). We know what its dot product
should look like: x x = c 2 t 2 − x 2 − y 2 − z 2
]
00 F 01 F 02 F 03 F 10 F 11 F 12 F 13 F 20 F (^) 21 F 22 F 23 F 30 F (^) 31 F 32 F
and F (^) αβ=
00 − F 01 − F 02 − F 03 − F 10 F (^) 11 F 12 F 13 − F 20 F (^) 21 F 22 F 23 − F 30 F (^) 31 F 32 F
2. Covariant Lorentz Transformation - With our geometry now defined, we can write the Lorentz transformation in covariant notation as: x ' = x - The Lorentz transformation tensor Λ transforms the spacetime coordinates x in frame K to the corresponding coordinates x ' in frame K '. - This can be represented in matrix notation as:
c t ' x ' y ' z '
c t x y z
c t ' x ' y ' z '
γ −β γ 0 0 −β γ γ 0 0 0 0 1 0 0 0 0 1
c t x y z
where γ=^
√^1 − v 2 / c 2 and^ β= v^ /^ c
Λν μ x ν = x ν Λν μ which both mean [
][ c t x y z ]
4. Covariant Electrodynamics - The 4-divergence equation above looks like the charge-current continuity equation: ∂ ∂ t
c 2
2 ∂ t
2 ]
c
[
c 2
2 ∂ t
2 ] = 4 (^) where
c
∂ t
α Wave Equations in Terms of Potentials
c
∂ t
E (^) x =− ∂ Ax c ∂ t
∂ x , E (^) y =− ∂ Ay c ∂ t
∂ y , E (^) z =− ∂ Az c ∂ t
∂ z E (^) x =−
1 ∂ x 0
0 ∂ x 1 , E^ y =−^
2 ∂ x 0
0 ∂ x 2 , E^ z =−^
3 ∂ x 0
0 ∂ x 3 E (^) x =−∂ 0 A 1 −∂ 1 A 0 , E (^) y =−∂ 0 A 2 −∂ 2 A 0 , E (^) z =−(∂ 0 A 3 −∂ 3 A 0 ) and Bx = ∂ Az ∂ y
∂ Ay ∂ z , By = ∂ Ax ∂ z
∂ Az ∂ x , Bz = ∂ Ay ∂ x
∂ Ax ∂ y Bx =−
3 ∂ x 2
2 ∂ x 3 , By =−
1 ∂ x 3
3 ∂ x 1 , Bz =−
2 ∂ x 1
1 ∂ x 2 Bx =− ∂ 2 A 3 −∂ 3 A 2 ,^ By =− ∂ 3 A 1 −∂ 1 A 3 ,^ Bz =− ∂ 1 A 2 −∂ 2 A 1
02 =∂ 0 A 2 −∂ 2 A
03 =∂ 0 A 3 −∂ 2 A 0 F 23 =∂ 2 A 3 −∂ 3 A
13 = ∂ 1 A 3 −∂ 3 A
12 = ∂ 1 A 2 −∂ 2 A 1 where F^01 = - Ex , F^02 = - Ey , F^03 = - Ez , F^23 = - Bx , F^13 = By , and F^12 = - Bz