Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Unit 3 of Math 213 Calculus Based, Exercises of Calculus

N/A....................................................

Typology: Exercises

2017/2018

Uploaded on 03/05/2024

daryl-trinidad
daryl-trinidad ๐Ÿ‡ต๐Ÿ‡ญ

1 document

1 / 23

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
UNIT III. Solutions of First Order Differential Equations
Overview
This unit gives you an insight regarding the reverse process operation of
differential equation. Further, it gives you the analytical skill regarding the application of
each solution, and finally, it helps you recognized the derivation of particular and general
solution from the given differential equation.
Learning Objectives:
At the end of the unit, I am able to:
1. Identify whether the differential equation is homogeneous, exact or linear;
2. Apply separation of variables, solution of homogenous, exact and linear
equations to find the general and particular equation of the given differential
equations.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17

Partial preview of the text

Download Unit 3 of Math 213 Calculus Based and more Exercises Calculus in PDF only on Docsity!

UNIT III. Solutions of First Order Differential Equations

Overview

This unit gives you an insight regarding the reverse process operation of

differential equation. Further, it gives you the analytical skill regarding the application of

each solution, and finally, it helps you recognized the derivation of particular and general

solution from the given differential equation.

Learning Objectives:

At the end of the unit, I am able to:

  1. Identify whether the differential equation is homogeneous, exact or linear;
  2. Apply separation of variables, solution of homogenous, exact and linear

equations to find the general and particular equation of the given differential

equations.

Setting Up

Directions. Answer each question clearly and completely. Write your answer on the

spaces provided.

  1. Transform the equation ( 1 + ๐‘ฆ

2

2

)๐‘‘๐‘ฆ = 0 in the form ๐ด(๐‘ฅ)๐‘‘๐‘ฅ +

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

_______________________________________________________________.

  1. What is homogeneous function? Give example.

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

_____________________________________________________________.

  1. What is exact differentia equation?

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

_____________________________________________.

  1. The equation

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

๐‘ฆ = ๐‘„(๐‘ฅ) is a linear equation in ๐‘ฅ. Write the equivalent

linear equation in ๐‘ฆ.

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________.

โˆ’ 2 ๐‘ก

2

โˆ’๐Ÿ๐’•

๐Ÿ

0

0

๐ŸŽ

โˆ’๐Ÿ๐’•

๐Ÿ

Example 2. Obtain the general and particular solution of

2

2

Example 3. ๐‘†๐‘œ๐‘™๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ฆโ€ฒ = ๐‘ฅ๐‘’๐‘ฅ๐‘(๐‘ฆ โˆ’ ๐‘ฅ

2

โˆ’๐’š

๐Ÿ

๐Ÿ

โˆ’๐’™๐Ÿ

๐Ÿ

๐Ÿ

Answer

Ans. ๐’”๐’Š๐’๐’š = ๐’„๐’„๐’๐’”๐’™

Assessing Learning

Name ___________________________________ Score ____________

Year and Sec. _____________________________ Date _____________

Activity No. 3.

Obtain the general and particular solution of the following:

2

Ans. ๐‘ฆ

2

5

2

๐‘ฅ

2

Ans. ๐‘ฆ

3

๐‘ฅ

2

4

2

Ans. ๐‘ฆ๐‘™๐‘›๐‘( 1 โˆ’ ๐‘ฅ) = 1

II. HOMOGENEOUS EQUATIONS

The differential equation

is homogeneous if

In general,

๐‘˜

example of Homogeneous differential equation ( 2 x

2

  • y

2

)dx + xydy = 0

let, ๐‘“

= ( 2 x

2

  • y

2

)dx + xydy

2

2

)dx + (๐œ†๐‘ฅ )( ๐œ†๐‘ฆ)๐‘‘๐‘ฆ

2

[( 2 x

2

  • y

2

)dx + xydy]

2

Thus, the degree is 2.

to solve for ๐ธ๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ( 1 )) let

or

after substitution, resulted differential equation will lead to ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’ ๐‘ ๐‘’๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘™๐‘’.

Example 1. Solve the solution of

3(3x

2

  • y

2

)dx โˆ’ 2xydy = 0

Solution:

3(3x

2

  • y

2

)dx โˆ’ 2xydy = 0

Let

Substitute,

3(3x

2

  • v

2

x

2

)dx โˆ’ 2vx

2

(vdx + xdv) = 0

3(3 + v

2

)x

2

dx โˆ’ 2vx

2

(vdx + xdv) = 0

Divide by x

2

3(3 + v

2

)dx โˆ’ 2v(vdx + xdv) = 0

9dx + 3v

2

dx โˆ’ 2v

2

dxโˆ’2vxdv = 0

9dx + v

2

dx โˆ’ 2vxdv = 0

(9 + v

2

)dx โˆ’ 2vxdv = 0

( 9 +๐‘ฃ

2

)๐‘‘๐‘ฅ

๐‘ฅ( 9 +๐‘ฃ

2

)

2 ๐‘ฃ๐‘ฅ๐‘‘๐‘ฃ

๐‘ฅ( 9 +๐‘ฃ

2

)

2

2

lnx โˆ’ ln(9+v

2

) = lnc

ln x/(9+v

2

) = lnc

x/(9+v

2

) = c

x = c(9+v

2

From

๐‘ฆ

๐‘ฅ

Thus, ๐‘ฅ = ๐‘ ( 9 +

๐‘ฆ

2

๐‘ฅ

2

x

3

= c(9x

2

+y

2

) answer

Assessing Learning

Name ______________________________________ Score __________________

Year and Section _____________________ Date ___________________

Activity No. 3.

Determine the general solution of the following:

  1. xydx + (x

2

  • y

2

)dy = 0

  1. x

2

yโ€™ = 4x

2

  • 7xy + 2y

2

  1. 3xydx + (x

2

  • y

2

  1. (x โ€“ y)dx + (3x + y) = 0 ; when x = 3, y = - 2 ; find the particular solution.
  2. xydx โ€“ (x + 2y)

2

dy = 0

  1. [x csc(y/x) โ€“ y]dx + xdy = 0

Step 1: Let

Step 2: Integrate partially with respect to x, holding y as constant

2

Step 3: Differentiate ๐ธ๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›

partially with respect to ๐‘ฆ, holding ๐‘ฅ as constant

Step 4: Equate the result of Step 3 to N and collect similar terms. Let

Step 5: Integrate partially the result in Step 4 with respect to y, holding x as constant

2

Step 6: Substitute f(y) to Equation (1)

2

2

2

2

๐Ÿ

๐Ÿ

Example 2

2

Ans. 3x

2

+ xy

2

- y

3

= c

Assessing Learning

Name ________________________________ Score _________________

Year and Sec. __________________________ Date __________________

Activity No. 3.

Test the exactness of each of the following equations and solve. If not exact solve using

the previous method.

  1. (2xy + y)dx + (x

2

  • x)dy = 0
  1. (x โ€“ 2y)dx + 2(y โ€“ x)dy = 0
  1. (1 + y

2

)dx โ€“ (x

2

y + y)dy = 0

  1. (cosx cosy โ€“ cotx)dx โ€“ sinxsiny dy = 0
  2. [2x + y cos(xy)]dx + x cos(xy)dy = 0
  3. (1 โ€“ xy)
    • 2

dx + [y

2

  • x

2

(1 โ€“ xy)

  • 2

]dy = 0 ; when x = 2, y = 1

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

๐‘ข

๐‘ข

๐‘ข

๐‘ข

๐‘ข

๐‘ข

๐‘ข

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

Example 1. Solve the solution of (๐‘ฅ

5

5

5

4

4

4

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

โˆซ (โˆ’ 3 /๐‘ฅ)๐‘‘๐‘ฅ

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

โˆ’ 3 โˆซ ๐‘‘๐‘ฅ/๐‘ฅ

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

โˆ’ 3 ๐‘™๐‘›๐‘ฅ

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

โˆ’ 3

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

โˆซ ๐‘ƒ๐‘‘๐‘ฅ

โˆ’ 3

4

โˆ’ 3

โˆ’ 3

3

2

3

๐Ÿ“

๐Ÿ‘

Example 2. 2 ( 2 ๐‘ฅ๐‘ฆ + 4 ๐‘ฆ โˆ’ 3 )๐‘‘๐‘ฅ + (๐‘ฅ + 2 )

2

Ans. y = 2 (x+ 2 )

โˆ’ 1

  • c(x+ 2 )

โˆ’ 4