Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Ultimate Guide of Data Structures Concept, Study notes of Data Structures and Algorithms

It is handwritten notes of Ultimate Guide of Data Structures Concepts, with simple examples.

Typology: Study notes

2019/2020

Available from 08/26/2024

reshma-10
reshma-10 🇮🇳

1 document

1 / 109

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
DATA
STRUCTURS
AND
LGDRITHMS.
Beyner
to
aneJ
GuDE.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Partial preview of the text

Download Ultimate Guide of Data Structures Concept and more Study notes Data Structures and Algorithms in PDF only on Docsity!

DATA STRUCTUR S

AND LGDRITHMS. Beyner to aneJ GuDE.

Data STRUCTURES AND Araorsrms “Be anes +o Xdvanced Give. ef eel De™ Date __ fp. Date shoucure jnho duction. 2 _ 2). Class\Ficatim of data, dyUcture =e — z _ intro duction +5 algoritony 3 4» pasymptotic, Anawsis (Sit... Se Ds— painder ea i s> DS— Strucere 2D q | +). Jos. Qeny 23 | 2) DS - binked Viet 39 Ja S- skip st 13s | — = 6 DS— SHACK 4) | u>. Ds - Quoue 44 es Ds —-Tree 4e | iN Types oF Trep [fd oa» DS — Gtaph Co. - | . . ,__Data Structure is a way +m stereo and orgamRe. Gata sq +nat it can be ysed etFicienty AS per yame Indicgtes i+S.01F that organizing tne deta in memean | = Teo data srrictire LS yor ans} —pagpamming language. fisosc cit , Tova, otc T+ is Ot ge algovitnams, that «WO can use in cing pmodmmMming language +o orticture cictro Wa memory = a | a | J QMqra strcucturo Ss | L pYimitto, deta _srructure “Non-PaemMtUe Derhe girtucy ee I I fot lchac float doulnie Vineg ir Nan linoar Dis. D-S + pamnke F Linear Darter srructuc® :— Mme arccinge ment of dara No ane sequonfid| manner 1s tsnawn as fea date sructur The derta, CAV cues Used for tins purpose are | Proray Sy Woked jist, SiruckS and Qul2UEs Ta_a¢nis dere. SGrructures, one element 1S comeacted +o any on® anctine r clement in a. ——| Vwnea fovea -_ ee | Non — finear data structure. = — i ae ineo ane__elernen+iS—_cinneckes) ~ aD 4ne “ny? number oF elements Seas Non— Vnecte dete. _shructures . Fxamyno i- trees and _qmohs. Ty 4nis case, eloments ALO _arcinged | LO oe mindem manner: Se - {81g adthms _) ts a / — q ia Alostract ote typos) + a [ Ser of nes ‘j To Sieuctyure dnc dain TM memer Aeo2moery, “n? number — of algunthms are poypased , ancl all 4in@s@— algoarhrmaS are Knowwns OS Dbs . ene TY Pore oa | - classmate | (G) doe 5 et Page WS SSK SS} —————— SS eee ee —— — _ =e — —~ Praca. Ss con~ speed :— fs cata _s greg cay day to tne infos of fe ancy Ri) do_cleg) web die amnauor ot Ssh. | Data _Structyure + —=-censider an _inyentery Size oh 106 “HEMS in ctere , {E aur aeyplicchon needs ty _ ectecin_for a _partiatlac Tend s4& recs tn drumset 06 ‘ers every atime. results ty aavhag caus pracy multiple Semis 2aseeia i= TP 4trrousands of USeTS ate searching eat Smo uitongous\+ on 1 200 h senoy then Aner are chancOs thet to we Fallod tyseuih dud ng Boat | prmocoss Jo soWe, this poblioms, olor. Srructures gre wusod. Data. ? ergata fm Zi a _cdati. Structure ‘in aq such CUAY ctor cil] “2m — are not requ +o be serene and egulke dat an he donke hed tn stesHy a AcWiantageas s& gerta Stricture, :— _ EPpifoncy : — TP +he chakca, of a clorcten, Structure. — pio.a implementing a pucticulot sot is pro pets SS Peg. ery eiicen in secon oe sine om Sac. Reusabiiry :— The daia_Siructaia_paniaes cout means spe muUHipte ctlent_pyagrums can use te cra. Grructure. ; ____flestrrachon i Tho dota Structure Spectied by tho | BRT diso pwnides jevol of ahetmetion. the client canna See ipreryy | Warising ot clara sFructure so Sata SeructurTre pc oonve. Non -Primitive. data stuck Dara Struckire ¢ i iincar Nan = linear Stic Dynamic Treo Gaeh 4 vv v ae LProy Linked ligt Stack @Queus classmate S. =) m—— © | at Ly hear Scoareh ond Aine} search. J — 1 = aan | | ao 7 Bp Bottig i— The pywcoss of ei@aging tne ie | Si¥ucture in oy specific omer ig culled aS Sorting. |} Merce ore moany digaorn ns, that can he usec to. aa __ _periatca _sarting far esampie-, Ans-Srctay Sachs _ | selection sort, buble sart ere . —— — _- merging Z— \“lhon Aun Vers fer Aang fst @ of Isizo ™m and respe cHvely of sfanilar -tupp-© of | elemenrs , clubwed dr ichned tn pepduce avin) Hist, | | Vise « of ceo. Cran) than tris picess 15 catlect 2. AN OTT NG . DAI. STRUCTURES, AND -ALGORITH as An dtganthy IS QA pweess oY a set of rules required do ~perfurm calculations ar samo. orhor sania sawing aypercahions eSpefaiy os QCA Ute ab is no cmplese. pagan ar _eade 5 tis | || jusie a _soturtion Clagic) oF a proimenn,ainich cm we. | —__| represemed dither asm Nnferrncl aescnption ustag | ~—_|ae foWcharmt or pscudacade. | —_] characteristic S of an algarithny . | Taput += fin digutnna Nas sane. input vaiues. wo | —_ | can pass O_o Serne. wp vale, to a = —~ alguntay - dlaotton should pe cigar and Simple. | C= c ° i FinFeness :— An digdMHbrns should nave finvenags — means hmited numhe r of inchtuctions. | Effectiveness 2 — fn _aiguntan) shauld hare. Prae as_each Mdmuctio ap algo __| affects ine overall pacess. , : i= The _genecal lacfc. Srructure Bie, foro, Algenthm fs appried to design an cilgontons -Tt is alsa Knoum 2S ethaushve circ Agora that 4 Sectches all passio\g , +o pwvide requixe J sciuctidne —+4 a i Sun alguns have two tupos :— at YY 7 astnizag. 2), SachFicing ——| Finds i Nding cl) soutians of q, As soon as the \ “ peovien—aocd_snen toa besr sa.ution is—| our Me nesr cdurhan j ral x j \E cine best Fae nna _— ferme) cp ee st }—TH.2._aiigerch mn cain toe analyzed bo 00 tego we Fist is wefore creating “a. }Second is apier creating +he_cilgenton.— _ ee Were are ty 9 aadiysiS oO cin aigenthen. Pricd Analysia I= Here , priory _angwsis ic she. shea | Analyas a> an digemphng evhich 16 clone a imp tng Poste ion Arc ysis i _ Here , pasre coy” ancy Gis 1S_OG Prevetica | 9 . a is _achTeed by ian piementing augefitions Using ans p rygearaming lo AGUAS - Aigoftun complexity oo =) The. perfermanco of ne aigonethra Cay 4 we _rmejscured in +g Factors : __—4 -, 4 Lime. Comperiry !— "J Me dime. cormprexity a aio aigerithin— is ahe amount of time required ro cUnnpre be ———] | tne. exocitian- The ime coomple.city of Teena COMAPI O xikef is mainky -cccuert ocd} | caunting +2 santipine? oS o2ps +a Anish — Date ~ —_ Page ——— iS = ——————————————————— 3 _ =a . Sum =o 5 H_SMPD OSE we Nave +o corciot® she gum of Nn. nmumperg. Sec isi co n_ __Stum. = Sur + i 3 4 _tliwnen me cop ends ten sum hos tne sum —, OS O Mummers. — ____ Space. emplexity Me Ao agnévnm's space conpacity ts ne. amount of Spacd. required to _saWe_c._ prance a ere an Output: simuar +o tne +ime bey ey , a 120 —+Spacek— = ne +imo require df by an algsnshng comey unde anreO _44ypes ore case i= ae deMres sane input Fer momen a diganeoy aa OS a, nuga anes: + | Prerage CAS@ !t— 44 4qnRaSg average Ama. “Fey ___ +he pmgmim erection - a Best case p= Tr detmes tne ‘mput Por athich tne Ag@rhns tures me, lines “Ama _4 | Reyna photic NotustionS == Tne coromanly used asymnptetic actrticns_ Used) “Roc eocuwlorting tne sunning Amo. com eles [oho Baal cliigen om is given oP lA v) Big a\n pare Cay s— Mais measure S Jere, perfn camanco. oF on agontn mn by} aimpy pyovliciing tne scxelor of grunt o& ane Pemncton- Tnis norahon prides ain up yerr bound - On ce Punctio inch eosucSS al at Puacnan never ~ SOUS Sucryeor shan the. upper ipo und - f 35 i 7 Perm \ Pon of 7 — ae Wz — — 1 > a | eee i, | ClAssauy | (is) yee \W4 Page ~~ a | Se — —_ Bema, 2 a =n) ood oe ae og ——_|| seemed then _ fon} =o gia) aaa} ie by ch ~ ——— 7-9 Cn \_or fer) t6 on Senet a —____l osigts cn eenix aad no Suclh shert —— | BOBS ae 6 gin) -fer_ al) n> Re ne] 2>. Ome ge een C=2-) i= ao It basicly Aesiiines est case Ss awich j . . - T+ is the ermal! way +o represeot 1OWOT ound | he : oS ayn _ciigorhra's cunning Emtaatok , ad j a a i Cy aCn5 » Fon’ ae 7 1 ¢, 9Co) Ke sy 4 Mo _P€n) = OCn)) Seamyla :— ier Pen) and gio) pe Bunctis o& PD —} Mor Mm iS Skeas recite do oF osube, Ppraqruco+— o\ = © gin) as os + ITn@. above. condi is _actrhiekied cualy Ye culng + C1. gm) < = fn) <5 Ca.gin) = a — ° a \ ———— memeny. TO dining +e. wane shoredch_lacahis,~Y ———}HII1S Known ag aeroferencding Pomsyce +1 pcrorers : 440 -- 4 LK ———_—_|]__ ——Pororer a dtbmatic 1 — - 2 —t Pray OR patnlars 1 ou cao _cefines acuy of in | Classany, KES py ih eet . (© xe Se Ses || = : TO déeare | Enea rsthe value. sturect anywhere 19 ane ees] ——) 2 ~ oA Woid a number of pain 2s, Pémrer +o. MayeNake Sm i= SC glows You to have poner on Oo panier and Sa on. _ GQ == Ft Lio | value 2000 addres, a. 21 St Sa f 3000 ee a b=ha-a AIT ih ae a 3000 2000 re a —. aaa ee Program ME Es i ee einer — nn ee. Sai = ore influde. ~< stlio.h> a Wt mnchin C) si os = a ee es classmate cs Date y | (pe Pose @ X —— a =| | + —_t £ ~ \| 7. {wnt a so 3) || int “py, 3 | — 1 — 6 =£a = n C"uaiue of @ = od \n" ays _—— Piotr die, oF a = %ed In", *Cza))s printf of og = + fod \n " Fb\3 printf Caddrmess o& a = Yuin", ga) 5 pate Caddess ata = "od —} —phortiCodaness & bp = % uly" : ,#) pomstC Value of bb = address a= Www" return Of > bn}; 7 J Value of q = Ss VOluoQ oF @Q = Ss | i rT address oF a = Qolo1g Gaga doldress of a = 1224443004 dddr€ Ss of b = aAnoHgd 42qg6 _ Vdlue oF h= addrass of a = BNO 4 292 Pca pa a 9 Pamisic do poymter _— +E include « strtio A> Yt main C) 3 [7 miz ss: int #h > ees nite