Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Tóm tắt kiến thức giải tích 2, Study notes of Calculus

Bản tóm tắt nội dung môn học giải tích 2

Typology: Study notes

2024/2025

Uploaded on 05/01/2025

thien-tri-huynh
thien-tri-huynh 🇻🇳

3 documents

1 / 17

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Tóm tắt kiến thức giải tích 2 and more Study notes Calculus in PDF only on Docsity!

M (^) &

  • I (^) CH PHAN DONG LOAI MOT 1 - (^) Dink (^) ngha New (^) floy) xicink tre (^) string long train (^) ( (^) = EB thi rich (^) phanting (^) laiI mode the C (^) , Jfxdlhim (l

2. Tink char

(^1) Godde = (^1 3) ([f(x, y) + g(x, (^) y)]de = Jf(xd + (^) lgl

  1. (^) I afkyde = Jopf(x, (^) ) de^4 New C^ = (^02 1) ,^ Expe^ = ( + x d + (thd
  2. AB (^) : Cho (^) f(x. ) lien (^) tu ii ABI (^) +(x, %. 2)

X = X(t) (^) , y =^ y(+), a+ =b^ It(x,de = (^) 1 f(x, (^) y() ,^ (x()+^ yc)d+^ HTE (^) Gric (^) Dude =I frecs (^) , rysing]/+^ r

y =^ y(x)^ ,^ axxb^ l^ flude^ =f,^ y]^. He (^) yiae Trangkhong (^) gian Last y.^ 2)de^ =^ 1x^ ,^ y^ ,^ 2).x^ +^ Ti^ +zied

X = X(y) , <yed

Stude

  • ICh PHEN^ DUGNG^ LOAI HAI 1.^ Dinhnghia
  • Cho F(x,y) = [P(X ,) (^) , G (^) (x (^) , i)a ham rector x tren (^) dig (^) my tron B (^). Khicto tich (^) phascry Loci #I wa (^) FdrTheEB : 1P(xidx + (^) Ody = (P(xdxQy
  • MLH giva tich^ phan (^) driong loai I^ valua : (Plxdx^ +^ Qudy = (Fril.^ caM
  • Khanhau^!^ -Tich^ phan strong loai IK^ phy thro was^ hing lis rich^ phan tren^ EB^.^ Tick^ phan (^) doing La #phythu (^) vaohung lyich (^) phan tren EB^ =^ 1 P(x,dx^ +^ Qxdy = -J P(xydx +^ Q

(^3). AB : Cho (^) P(X.Y) , Q(x.y) lien (^) tu trong minmi D chia EB (^). (^) (G, (^) R) y = y(H) 1 P(xQudy (^) x = x(t) , (^) y = (^) y(t) ; (^) ((x,dx + (^) Q(xydy = (^) /[P(X+, y)x +^ Q(x+ 1 y)y X (^) = X(t) (^) 1P(xidx + (^) Quiyldy = (^) (P(xy , y)x + (^) G(x+ , y)]dy (^) Trongkhang gran, (ap" (x, (^) y. 2)d + Q (x, (^) y, z)dy + (^) R(x. y, 2)dz = (^) (TP(x+, y+, 2 + )x! + (^) Q(x+ y+ , 2 +)y+ + (^) R(x+ y+ (^) , 2 +)zi]d (^4). (^) Cony this Green :

· Diem M(x, 4) ma curing any 2ctio x dink Kii X(t) , y(t) egLien bu hay atien tot waring cong Cresta de ca Mthia man it cuing any Litnhattai 2 gia tri teta, b]

~ A2 [Kicha (^) tiembrgL #C don (^) gran. Da EBstiem (^) stane wi (^) trung nhau (^) Agl DL (^) Khep Kin (^). Chin (^) () cus (^2) de (^) quy tinh la (^) ngvie chin Kin (^) sing ho

  • (^) Min (^) phang D (^) tgt min (^) lien (^) Thing new nhif (^) A, BED (^). #C lin (^) tuc NAB ED (^). Mien (^) phong Datgl min don lien Khitha (^) : D lien (^) thing va nee detgian Khep kin 2 nam (^) true trang D thi D'crdiene < se (^) namtras (^) trang D (^). NeuDphas min don lien (^) thigl misa lien

· D22 too x clink bi x = X (H) , y = y()gL tron Fing thur new^ Cothe" Chia thank which oak who va xt , xi lies to

  • Trung mp^ Oxy^ ,^ cho D^ la^ microtong^ bien^ li^ dong^ congon^ gian^ Khep kin^ ,^ tron^ Fing^ Khur^ C^ ,^ P(X^ ,^ y)^ ,^ P(,^ Y)^ ,^ Q(x.Y)^ ,^ GY]^ lituc^ Trang D^ : GP(dx +^ Q,^ y)dy^ = / · Ling (^) dung tinh^ dien Rich^ minphangD :^ Sp^ = //oxdy =^ & (^) Oxy-y*x

& O / ① AT (^) CONG KHONG^ GIAN

  • Tink^ dien rich^ mat (^) zong Dien tich^ macang 2 = f(xy) chinhchien^ xuing mathing Oxy ( D^ do finh^ the^ Lingthic :^ S^ = (11 +^ (f)+^ (f)^ dxdy TCH PHAN (^) MIT LOAI MOT (^1) Binh Ughia
  • Tick (^) phan during kaimas^ latich^ phan^ codang^ : 1)f(x,^ y^ ,2)dS^ =him
  1. Tink^ char · 1/1ds =^ dien tich^ mar (^) cong · ([f(, y, 2) + (^) g(x, (^) y. 23]b =f(x,^ y,^ 2)ds + //g(x, (^) y , z)ds ↑ 2 = (^) 2(y) : I^ /zeds^ all] Ax · Daf(x , y, 2)d) = aff(x ,y, z)dS · New S (^) = S, @S2 thi
  1. fixed^ =

+, y, 27d +

If (x,^ +,^ z)ds) (^) living (^) to va^ x = x (^) (y, z) va^ y =^ y(x, z) ICH (^) PHEN MIT (^) LOAI HAL

  1. (^) Mat dink (^) bring B^ =^11 +^ z +^2
  • Marlong S (^) tgl mai tron new (^) F(x,y , 2) cicas (^) tao ham (^) ring cap mat F (^) , F!F lien (^) tu (^) vathing (^) doing thi (^) bang Orin (n -) · MCS (^) &gL masich King (mi2^ phia)^ mis^ himsas^ tink^ in^ taims^ Mix,^ Y^ ,^ 2)^ Sarchonn^ : (.^ (,Y,2)^ ,^ nex,^ 2)^ ,^2 ,^ (X,^ Y,2)^ Lentur^ tes^.^ Kristic
  1. (^) Dinh (^) nghia Cho P(x, (^) y, 2) (^) , Q(x,y, 2) , R(xy,2) xa (^) climb tren (^) mat from (^) , (^) fish hung S (^) , losa, crsB, war) : Tick (^) phanmatloit : I^ :
  1. [P(xy,^ 2)vs^ +^ Q(x,y , 2) (^) crsB + (^) R(x,y,2) csg]dS (^) Eghsch phon (^) mai lat ma P, Q, R (^) tren (^) mar (^) tich huings. MH : I = (^) /Payd +^ Q6zdx +^ Roxdy S
  1. Datich (^) phan luai hai (^) v tich (^) phan kep
  1. M(x,^ y,^ 2)dxdy^ = 1)) Rixy.^ z(x,^ i) dya (^4). Carb (^) tink rich (^) phan mat kai^

hai

Cach (^1) : Dra (^) v tich (^) phan mat las mit I

  • GS^ :^ z^ =^2 (x,^ y) ,^ in^ ↑^2 , F(x,^ y,^ z)^ =^2 -^ z^ (x,y) =^0 , i^ =

(t +^2 +^ 2)

(2x - 24) =^ Ca^ , cas, cosf) , &S = 11 +Z +^ &, dxd ↑ = /[Pusa

  • (^) Quep-Rus]dS : /[P. +^
  • R = [P(y2(2) +^ Q(x, (^) y , 2x)(-zi) +^ R(x, y , 2)]dxdy

Th, F(xy,2) = 2(y) - z = 0. i

=in (12-1^ =^ pos ,^ cep , 18)^ , d^ =^1 +^ 2x^ +^2 , dxdy F (^) : /Pasa

  • Quss + (^) Rosj]dS = /[P +R [Dy2Qy2 - Rxy]dy Cach (^2) : Jack (^) thank 3 tich (^) phan I = Phydz^ +^ Adudx^ +^ Roxdy^ = 1 Pasad^ +upd^ + words^ =^ I^ +^ +^ I^ =PzdydzQ(xy2dxdRx^2 x

( :^0 (n,^ tris)^ =

() :^ <(n,^ wil^ ki (0) : z =^ (n^ , (^) tri

  1. (^) Cong this (^) Ostrogratki Gauss Cho Sla (^) mo kin (^) - ~ la (^) va The^ do barquant b S.^ Nei^ P (^) , Q (^) , R va car (^) dao ham^ rieng cap (^) mos no no lien (^) the tren min (^) this Plyd +^ Qxdz + (^) Rody = 1))(dxdyd Dau"+^ "nei^ hig wirt hung rangoor e (^) , "-"neuing we (^) up hung vao (^) range
  2. (^) Cing this Stokes Cho (^) Slama (^) cong , tron (^) , (^) coctinh hing v (^) bien (^) Listing ang Khep Kin C (^). P (^) , Q (^) , R va ca (^) dao ham (^) rieng cap mat (^) wachung lien (^) tuc tren S^. Khiato : I (^) = &P(ydx +^ Q(x,y,^ z)dy^ +^ M(x,^ yz)d^ = () dx dy · Hung can^ wasa^ hang auding (^) cong Khep Kin^2 tran^ theo^ quy Fai^ ban^ tay phai
  • long their stokes^ indic vint^ drivday : & Plyvidx^ + (^) Glady - (^) Rhyzidn = /a co a

2 ~^ ~ So d (^) Khao Sat (^) Su Hi TU Cia (^) chul Bre1 : Khao sar (^) su his tu (^) try o via cruis ↓. Neal htt (^2). (^) New (a) (^) phan doth (^) dinken (^) Limphnn(Ghsdtchun D'Alambert, Cauchy (^) d xt h (^) u yetia (^3). (^) Nei (a) (^) phank (^) , this t can (la =^ 0)^ Thi (^) chuyin sang bon Bri (^2) : Khao sat^ su his Hu dis^ Kien (^). Neil ch^ dan^ dais (^) Th (^) dung tu chin^ Leibni j Bris :^ Khossu (^) ha m aa^ Churching am^ bang or tinchuan^ tich^ phan , so sand^ , D'Alambert^ , (^) Cauchy

Gu (^) LUY THA ↓.^ Min^ his tu (k) Churt (^) lig this la (^) chut anX" a R.Taphp t gitx the hu (^) thig min (^) ha (^) chilThia

  1. Ban^ Kink^ he tu

(R= + a) (r=^0

chur ho fu Fx ,^ (x-x)^ <^ R

Choa(x,^ ant^. Whi (^) : () (^) ChhouxER , (^) ChurchiuRgL bankinh - (^) phix(x-x

  1. Das^ hi D'Alembert j Choa(x-ER.^ GS^ :n^ : Bankin^ hu R

.^ Dan^ hiem Cauchy Chon(X-X ,^ E^. GSmaT BankinhhuR 5 - . Car bioho (^) sa min^ he (^) tu co^ chu, (^) luy tha Bri 1 : (^) Tim bankinh^ hi, (^) fu R Bri 2 :^ X^ su hi (^) tu we chui s twinhing in bien (^) IX-X) = R (^). Chisd chiandas (^) , En, Ich (^) so sand (^) , Ksd (^) +ch D'Alambert va (^) Cauchy (^6). Tinh char -. Tang ca^ chu^ hiy this^ limes kam^ lien^ tus tren^ min^ his zu is^ no

  1. (^) Trong (^) Khoong histy. (^) (ana-]^ =(x - x
  2. (^) Trang (^) Khong hist : (^) ((an()dx(a(x)"d =(x - v
  • C 7.^ Chuc^ Taylor-Maslaurin ·^ Cho^ f(x) x^ tink trang lancin Xo va^ to ham^ capty Y (^) taixo · Khi(x-X chu^ TaylorfKhach Macar^ :
  • Cho f(x)ha vi (^) vohan (^) tring Ihoan^ (x-2, x +^ 3) (^) , 320 va IM30^ : (^) (f/XM (^) , Ext(X- (^3) , X +^ 2). Whi o f(x) co the bi dien^ thank^ chic^ Tayler (^) fai xo : f(x) (^) =x

· Phan^ tich^ mot so^ ham^ c^ ban^ thank^ chuc^ Manlaurin

(^1) S es IR^6. sin

IR
  1. Inkt)^ = (1, 1] 7 ,^ Cog^ X^ IR (^3). ~x-a)--^ (d^ -n^ + 1)xv(-1, 1) 8. R (tx)" (^) al (- (^1) , 1) acta^ R : (= (^1) , 1) Ir (^). sinhx)!
R