Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solution for Mathematics, Assignments of Business Mathematics

Solution for the Mathematics, Mathematics for Economics and Business

Typology: Assignments

2023/2024

Uploaded on 04/26/2025

khanh-pham-minh
khanh-pham-minh 🇻🇳

2 documents

1 / 59

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
8 (a) 16
(b) Presented with the calculation, 42, your
calculator uses BIDMAS, so squares first to get
16 and then subtracts from zero to give a final
answer, 16. To obtain the correct answer you
need to use brackets:
4)(x
2
52
9 (a) 9 (b) 21; no
10 (a) 43.96 (b) 1.13 (c) 10.34 (d) 0.17
(e) 27.38 (f) 3.72 (g) 62.70 (h) 2.39
11 (a) 7x 7y (b) 15x 6y (c) 4x + 12
(d) 21x 7 (e) 3x + 3y + 3z (f) 3x2 4x
(g) 2x 5y + 4z
12 (a) 5(5c + 6) (b) 9(x 2) (c) x(x + 2)
(d) 4(4x 3y) (e) 2x(2x 3y) (f) 5(2d 3e + 10)
13 (a) x2 + 7x + 10 (b) a2 + 3a 4 (c) d2 5d 24
(d) 6s2 + 23s + 21 (e) 2y2 + 5y + 3 (f) 10t2 31t 14
(g) 9n2 4 (h) a2 2ab + b2
14 (a) 6x + 2y (b) 11x2 3x 3 (c) 14xy + 2x
(d) 6xyz + 2xy (e) 10a 2b (f) 17x + 22y
(g) 11 3p (h) x2 + 10x
15 (a) (x + 2)(x 2) (b) (Q + 7)(Q 7)
(c) (x + y)(x y) (d) (3x + 10y)(3x 10y)
16 (a) 4x2 + 8x 2 (b) 13x
17 S = 1.2N + 3000E + 1000(A 21); $204 000
18 (a) C = 80 + 60L + K (b) C = 10 + 1.25x
(c) H = 5a + 10b (d) X = Cd + cm
Exercise 1.1*
1 (a) 3 (b) 5 (c) 7
2 (a) 2 7 (9 + 3) = 17
(b) 8 (2 + 3) 4 = 1
(c) 7 (2 6 + 10) = 1
3 (a) 6 (b) 6 (c) 5 (d) 96
(e) 1 (f) 6 (g)
5
4
(h) 63
4 (a) 6 (b) 2 (c) 5
5 y2 + xy 5x + 2y 6
Answers
ChApter 1
Section 1.1
Practice Problems
1 (a) 30 (b) 2 (c) 5
(d) 5 (e) 36 (f) 1
2 (a) 1 (b) 7 (c) 5
(d) 0 (e) 91 (f) 5
3 (a) 19 (b) 1500 (c) 32 (d) 35
4 (a) x + 9y (b) 2y + 4z (c) not possible
(d) 8r2 + s + rs 3s2 (e) 4f
(f) not possible (g) 0
5 (a) 5z 2z2 (b) 3y (c) z x2
6 (a) 7(d + 3) (b) 4(4w 5q)
(c) 3(2x y + 3z) (d) 5Q(1 2Q)
7 (a) x2 + x 6 (b) x2 y2
(c) x2 + 2xy + y2
(d) 5x2 3xy + 5x 2y2 + 2y
8 (a) (x + 8) (x 8)
(b) (2x + 9) (2x 9)
Exercise 1.1
1 (a) 20 (b) 3 (c) 4 (d) 1
(e) 12 (f) 50 (g) 5 (h) 3
(i) 30 ( j) 4
2 (a) 1 (b) 3 (c) 11 (d ) 16
(e) 1 (f) 13 (g) 11 (h) 0
(i) 31 ( j) 2
3 (a) 3 (b) 2 (c) 18 (d) 15
(e) 41 (f) 3 (g) 18 (h) 6
(i) 25 ( j) 6
4 (a) 2PQ (b) 8I (c) 3xy
(d) 4qwz (e) b2 (f) 3k2
5 (a) 19w (b) 4x 7y (c) 9a + 2b 2c
(d) x2 + 2x (e) 4c 3cd (f) 2st + s2 + t2 + 9
6 (a) 10 (b) 18 (c) 2000
(d) 96 (e) 70
7 (a) 1 (b) 5 (c) 6 (d) 6
(e) 30 (f) 44
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b

Partial preview of the text

Download Solution for Mathematics and more Assignments Business Mathematics in PDF only on Docsity!

8 (a) 16

(b) Presented with the calculation, − 42 , your

calculator uses BIDMAS, so squares first to get

16 and then subtracts from zero to give a final

answer, − 16. To obtain the correct answer you

need to use brackets:

( 2 4 ) x^2

9 (a) 9 (b) 21; no 10 (a) 43.96 (b) 1.13 (c) 10.34 (d) 0. (e) 27.38 (f) 3.72 (g) 62.70 (h) 2. 11 (a) 7 x − 7 y (b) 15 x − 6 y (c) 4 x + 12 (d) 21 x − 7 (e) 3 x + 3 y + 3 z (f) 3 x^2 − 4 x (g) − 2 x − 5 y + 4 z 12 (a) 5(5 c + 6) (b) 9( x − 2) (c) x ( x + 2) (d) 4(4 x − 3 y ) (e) 2 x (2 x − 3 y ) (f) 5(2 d − 3 e + 10) 13 (a) x^2 + 7 x + 10 (b) a^2 + 3 a − 4 (c) d^2 − 5 d − 24 (d) 6 s^2 + 23 s + 21 (e) 2 y^2 + 5 y + 3 (f) 10 t^2 − 31 t − 14 (g) 9 n^2 − 4 (h) a^2 − 2 ab + b^2 14 (a) 6 x + 2 y (b) 11 x^2 − 3 x − 3 (c) 14 xy + 2 x (d) 6 xyz + 2 xy (e) 10 a − 2 b (f) 17 x + 22 y (g) 11 − 3 p (h) x^2 + 10 x 15 (a) ( x + 2)( x − 2) (b) ( Q + 7)( Q − 7) (c) ( x + y )( xy ) (d) (3 x + 10 y )(3 x − 10 y ) 16 (a) 4 x^2 + 8 x − 2 (b) − 13 x

17 S = 1.2 N + 3000 E + 1000( A − 21); $204 000

18 (a) C = 80 + 60 L + K (b) C = 10 + 1.25 x (c) H = 5 a + 10 b (d) X = Cd + cm

Exercise 1.1*

1 (a) 3 (b) 5 (c) − 7 2 (a) 2 − 7 − (9 + 3) = − 17 (b) 8 − (2 + 3) − 4 = − 1 (c) 7 − (2 − 6 + 10) = 1 3 (a) − 6 (b) 6 (c) − 5 (d) − 96

(e) − 1 (f) 6 (g) 5 4

(h) 63

4 (a) 6 (b) 2 (c) 5 5y^2 + xy − 5 x + 2 y − 6

ChApter 1

Section 1.

Practice Problems

1 (a) − 30 (b) 2 (c) − 5 (d) 5 (e) 36 (f) − 1 2 (a) − 1 (b) − 7 (c) 5

(d) 0 (e) − 91 (f) − 5 3 (a) 19 (b) 1500 (c) 32 (d) 35

4 (a) x + 9 y (b) 2 y + 4 z (c) not possible

(d) 8 r^2 + s + rs − 3 s^2 (e) − 4 f

(f) not possible (g) 0

5 (a) 5 z − 2 z^2 (b) − 3 y (c) zx^2 6 (a) 7( d + 3) (b) 4(4 w − 5 q )

(c) 3(2 xy + 3 z ) (d) 5 Q (1 − 2 Q ) 7 (a) x^2 + x − 6 (b) x^2 − y^2 (c) x^2 + 2 xy + y^2 (d) 5 x^2 − 3 xy + 5 x − 2 y^2 + 2 y 8 (a) ( x + 8) ( x − 8)

(b) (2 x + 9) (2 x − 9)

Exercise 1.

1 (a) − 20 (b) 3 (c) − 4 (d) 1

(e) − 12 (f) 50 (g) − 5 (h) 3 (i) 30 ( j) 4 2 (a) − 1 (b) − 3 (c) − 11 (d) 16

(e) − 1 (f) − 13 (g) 11 (h) 0 (i) − 31 ( j) − 2

3 (a) − 3 (b) 2 (c) 18 (d) − 15 (e) − 41 (f) − 3 (g) 18 (h) − 6 (i) − 25 ( j) − 6

4 (a) 2 PQ (b) 8 I (c) 3 xy (d) 4 qwz (e) b^2 (f) 3 k^2

5 (a) 19 w (b) 4 x − 7 y (c) 9 a + 2 b − 2 c (d) x^2 + 2 x (e) 4 c − 3 cd (f) 2 st + s^2 + t^2 + 9 6 (a) 10 (b) 18 (c) 2000

(d) 96 (e) 70 7 (a) 1 (b) 5 (c) − 6 (d) − 6

(e) − 30 (f) 44

6 (a) 2 x − 2 y (b) 2 x (c) − 2 x + 3 y

7 (a) x^2 − 2 x − 24 (b) 6 x^2 − 29 x + 35

(c) 6 x^2 + 2 xy − 4 x (d) 12 − 2 g + 3 h − 2 g^2 + gh (e) 2 x − 2 x^2 − 3 xy + yy^2 (f) a^2 − b^2 − c^2 − 2 bc

8 (a) 3(3 x − 4 y ) (b) x ( x − 6)

(c) 5 x (2 y + 3 x ) (d) 3 xy ( y − 2 x + 4) (e) x^2 ( x − 2) (f) 5 xy^3 (12 x^3 y^3 − 3 xy + 4)

9 (a) ( p + 5)( p − 5) (b) (3 c + 8)(3 c − 8)

(c) 2(4 v + 5 d )(4 v − 5 d ) (d) (4 x^2 + y^2 )(2 x + y )(2 xy )

10 (a) 112 600 000 (b) 1.

(c) 283 400 (d) 246 913 577

11 (a) π = 12 y − 3 x − 800 (b) $

(c) 0 ≤ yx (d) π = 9 x − 800

12 (a) 2 KL ( L + 2) (b) ( L − 0.2 K )( L + 0.2 K )

(c) ( K + L ) 2

Section 1.

Practice Problems

1 (a) 3 5

(b) 4 5

(c) 1 2 y

(d) 1 2 1 3 x

(e) 1 x 2 4

2 (a) 3 8

(b) 7 4

(c) 3 4

(d) 1 18

3 (a)

7 (b)^

15 (c)^

4 (a) 5 x 1 2

(b) x ( x^^1 1) x 1 10

(c) 5 x 1 1

(d) (^) ( x 1^ x 1)(^^1 x^3 1 2)

5 (a) 6 (b) 12 (c)

2 4 (d)

5 (e)^

6 (a) 12 > 9 (true) (b) 12 > 6 (true)

(c) 3 > 0 (true) (d) same as (c)

(e) 2 > 1 (true) (f) − 24 > − 12 (false)

(g) − 6 > − 3 (false) (h) − 2 > − 1 (false)

(i) − 4 > − 7 (true)

7 (a) x > − 7 (b) x ≥ 2

Exercise 1.

1 (a) 1 2

(b) 3 4

(c) 3 5

(d) 1 3

(e) 4 3

2 (a)

20 ;^

25 (b)^

3 (a)

x (b)

2 x (c)^

ac (d)^

3 xy (e)^

a b

4 (a) p 2 q 1 3 r

(b) 1 x 2 4

(c) b 2 a 1 1

(d) 2 3 2 e

(e) 1 x 2 2 5^1 2 x 2 2 2( x 2 1) 2

x 2 1 5 x 2 15 ; other two have no common

factors on top and bottom.

6 (a) 3 7

(b) 1 (^2 ) (c) 5 6

(d) 7 20

(e) 7 18

(f) 5 6

(g) 5 8

(h) 2 5

(i) 7 12

( j) 1 30

(k) 2 27

(l) 21 2

8 (a) 1 x

(b) 2 5

(c) 3 x^^2 x^2

(d) xy

7 y 1 2 x (^) (e) 3 (f) 15 c 1 10 d 36

(g) x^^1 x 1 3

(h) 18 7

h^2 (i) t 20

( j) 1

9 (a) 5 (b) 6 (c) 18 (d) 2

(e) 10 (f) − 1 (g) 60 (h) 1 2 3

(i) − 5 ( j) − 3 (k) − 2 (l) 2 3

(m) 3 1 4

(n) 3 (o) 1 4

10 (a), (d), (e), (f)

11 (a) x > 1 (b) x ≤ 3 (c) x < − 3 (d) x > 2

12^23 x

13 (a) 7 26

2 (b) x ≤ 10

Exercise 1.2*

1 (a) x^^2 2

(b) 2 x 2 1

(^3) (c) 4

(d) − 1 (e) 1 x 2 6

(f) x^^1 x 1 4 (g) 1 2 x^2 2 5 x 1 3

(h) 3

2 x 1 5 y

2 (a) 5 7

(b) 1 10

(c) 3 2

(d) 5 48

(e) 22 13

(f) 11 9

(g) 141 35

(h) 34 5

(i) 6 ( j) 17 10

(k) 7 9

(l) 4

(2, 0) 1

1

2

3

4

5

2 3 4 5 (0, 2 1)

x 2 2 y 5 2

x

y

21 21 22 23 24 25

25242322

Figure S1.

5 From Figure S1.5, the point of intersection is (1, −^1 / 2 ).

(^11)

2

3

4

5

2 3 4 5 x

y

21 21 22 23 24 25

25242322 point of intersection (1, 2 12 )

3 x 2 2 y 5 4

x 2 2 y 5 2

Figure S1.

6 (a) a = 1, b = 2. The graph is sketched in Figure S1.6.

(b) a = −2, b = 1 / 2. The graph is sketched in Figure S1.7.

1

1

2

3

2 3 x

y 1 unit intercept 1 unit

y 5 x 1 2

21 21 22

23 22

Figure S1.

x

y

21

21

22

23

2 1

1

1

y 5 122 2 x

1 2

(^2112)

(^22 )

1 2

1 2 (^2 )

1 2

(^1 )

1 unit

2 units

intercept

Figure S1.

Exercise 1.

1 From Figure S1.8, the point of intersection is (2, 3).

y

x

(2, 3)

Q (^) R

S

P 1

1

2

3

4

5

6

7

8

9

21 21 2 3 4 5

22

25242322

Figure S1.

2 (a) The graph is sketched in Figure S1.9.

Cost in $

1000 900 800 700 600 500 400 300 200 100 1000 2000 3000 4000 5000 Distance in km

Figure S1.

(b) (i) $540 (ii) 2500 km 3 A, C, D, E 4 (a) 6 (b) −1; (6, 2), (1, −1)

5 x y

The graph is sketched in Figure S1.10.

1

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7

4 x 1 3 y 5 24

x

y

Figure S1.

6 (a) (−2, −2) (b) (2, 1^1 / 2 ) (c) (1^1 / 2 , 1) (d) (10, −9)

7 (a) 5, 9 (b) 3, − 1 (c) −1, 13 (d) 1, 4

(e) 5 2 2, (^2) (f) 5, − 6

8 (a) The graph is sketched in Figure S1.11.

(b) The graph is sketched in Figure S1.12.

1 unit 1 unit

1

1

2

3

2 3

y 5 2 x

x

y

21 21 22 23

23 22

Figure S1.

1 unit 2 units

1 1 2 3 4 5 6 7

2

3

4

5

x

y

(^252423222211) 22 23 24 25

y 5 12 x 2 3

26

Figure S1.

9 (a) C = 4 + 2.5 x

(b) The graph is sketched in Figure S1.13.

10

10 15 20 Distance in miles

5

20

30

40

50

Cost in $

Figure S1.

(c) 8 miles

Section 1.

Practice Problems

1 (a) 0 (b) 48 (c) 16 (d) 25 (e) 1 (f) 17

The function g reverses the effect of f and takes you

back to where you started. For example, when 25 is

put into the function f , the outgoing number is 0; and

when 0 is put into g , the original number, 25, is

produced. We describe this by saying that g is the

inverse of f (and vice versa).

2 The demand curve that passes through (0, 75) and

(25, 0) is sketched in Figure S1.16. From this diagram

we see that

(a) P = 6 when Q = 23

(b) Q = 19 when P = 18

75

18

19 23 25

6

P

Q

P 5 2 3 Q 1 75

Figure S1.

3 (a) Q = 21 and P = 36

(b) Q = 18 and P = 48. The consumer pays an

additional $12. The remaining $1 of the tax is

paid by the firm.

4 P 1 = 4, P 2 = 7, Q 1 = 13 , Q 2 = 14.

The goods are complementary.

Exercise 1.

1 (a) 21 (b) 45 (c) 15 (d) 2

(e) 10 (f) 0 ; inverse

2 The supply curve is sketched in Figure S1.17.

(a) 11 (b) 9

(c) 0; once the price falls below 7, the firm does not

plan to produce any goods.

P 5 13 Q 1 7

11 10

7

9 12

P

Q

Figure S1.

3 (a) Demand is 173. Additional advertising

expenditure is 12.

(b) Normal

4 (a) 23

(b) Substitutable; a rise in P A leads to an increase in Q.

(c) 6

5 a = −6, b = 720

6 (a) 20, 10, 45; line passes through these three points.

(b) Line passing through (50, 0) and (0, 50)

Q = 20, P = 30

(c) Price increases; quantity increases.

8 P 1 = 40, P 2 = 10; Q 1 = 30, Q 2 = 55

9 (a) Q = 30

(b) Substitutable; e.g. since coefficient of Pr is positive.

(c) P = 14

(d) (i) slope = − 20 , intercept = 135

(ii) slope = 1

, intercept = 6.

Exercise 1.5*

1 (a) As P S rises, consumers are likely to switch to

the good under consideration, so demand

for this good also rises: that is, the graph shifts

to the right.

(b) As P C rises, demand for the bundle of goods

as a whole is likely to fall, so the graph shifts

to the left.

(c) Assuming that advertising promotes the good

and is successful, demand rises and the graph

shifts to the right. For some goods, such as drugs,

advertising campaigns are intended to discourage

consumption, so the graph shifts to the left.

(^2) m 5 2 3 c 5 9 2

3 0 and 30

4 (1) P = 30, Q = 10

(2) New supply equation is 0.85 P = 2 Q S + 10;

P = 33.6, Q = 9.28.

5 (a) 53, 9 (b) $

6 P 1 = 20, P 2 = 5, P 3 = 8; Q 1 = 13, Q 2 = 16, Q 3 = 11

7 Change supply equation to P = 2 Q S + 40 + t.

In equilibrium

− 3 Q + 60 = 2 Q + 40 + t − 5 Q = − 20 + t

Q 5 4 2 t 5

Substitute to get 3 t

P 5 48 1

(a) t = 5; firm pays $2 (b) P = 45, Q = 5

8 (a) a > 0, b > 0, c < 0, d > 0

(b) (^) Q 5 d^^2 b a 2 c

ad 2 bc a 2 c

and P 5

Section 1.

Practice Problems

1 (a) Q = 8

(b) Q = 2 P − 26 (multiply out brackets)

(c) Q = 2 × 17 − 26 = 8

2 (a) x 5 y 6

(b) x (^5 17) y^1 (^1 15 1 71) y^ y

3 (a) (^) x 5 1 1 a y 1 2 c

(b) (^) x 5 22 2 4 y y 2 1

Exercise 1.

1^1 P 2 4; 22

Q 5

2 (a) y = 2 x + 5 (b) y = 2( x + 5)

(c) 5 x^2

y 5 (d) y = 2( x + 4)^2 − 3

3 (a) multiply by 5 add 3

(b) add 3 multiply by 5

(c) multiply by 6 subtract 9

(d) square multiply by 4 subtract 6

(e) divide by 2 add 7

(f) reciprocate multiply by 2

(g) add 3 reciprocate

4 (a) 1 x 5 9 ( y 1 6) (b) x = 3 y – 4

(c) x = 2 y (d) x = 5( y − 8)

(e) y

x 5 12 2 (f) y

x 5 41 7

5 (a) Q a

b a

P 5 2 (b) b^^1 I 1 2 a

Y 5

(c) aQ

b a

P 5 1 2

y 1 2

x 5 3

7 (a) D 5 HQ

2 2 R

(b) H 5 Q^2

2 DR

Exercise 1.6*

1 (1) (a) multiply by 9 add 1

(b) multiply by − 1 add 3

(c) square multiply by 5 subtract 8

(d) multiply by 3 add 5 square root

(e) square add 8 reciprocate multiply by 4

(2) (a) y^^2 x (^5 ) (b) x = 3 − y

(c) y^^1 x 5 6 (^5) (d) y

x (^53)

(e) y

x 5 6 2 8

2 (a) c^^2 a x (^5) b (b) a

(^2 1) b a 1 1

x 5

(c) x = ( g − e )^2 − f (d) ma

2 x (^5) b 2 1 n

(e) n

2 x (^5) m 21 m (f) a

(^2 1) b 2 b 2 a

2 x 5

3 V^^1

t (^5) V 2 5 ; 11

4 S

P

r 5 100 n 2 1

5 (a) G = Y (1 − a + at ) + aT − b − I

(b) a

G 1 b 1 I 2 Y (1 2 a 1 at ) T 5

(c) aY

G 1 b 1 I 2 Y 1 aY 2 aT t 5

(d) T 2 Y 1 tY

a 5 G^^1 b^^1 I^^2 Y

50

50

100

100

150

150

200 45 degree line C 1 I line

200 Y

Figure S1.

Y = 160

If MPC decreases, the slope decreases as

indicated by the dashed line. The point of

intersection shifts down the 45° line, showing

that the equilibrium value of Y decreases.

7 (a) The coefficient of P 2 in the demand equation for

good 1 is positive, indicating that demand for

good 1 rises as the price of good 2 goes up.

Similarly, for the second equation. Hence the

goods are substitutable.

(b) P 1 = 15, P 2 = 8; Q 1 = 98, Q 2 = 157

(c) The price of good 1 reduces by $3.15 and the

price of good 2 reduces by $0.35.

8 (a) 3 f + 4 s ≤ 3000 ; 640 kg

(b) (i) 3

(ii) 5

(iii) Q 5 36 2 5 P

2 P

(c) S 5

Y 1 2

2 Y 2 100

9 (a) x 5 y 5

2 9 2 m

3 2 2 n

2 ( 9 2 m )

6 n 2 m , ; m = 9

(i) Infinitely many solutions

(ii) No solutions

(b) P 1 = 12, P 2 = 7, P 3 = 8 10 Y = 3160, r = 2.

Figure S1.22 (not to scale) shows the IS and LM curves

intersecting at the equilibrium point (2.4, 3160). The

dashed line shows the new IS curve after a reduction

in MPC. The point of intersection has moved down

The graphs are sketched in Figure S1.20.

5

50

10

100

15

150 200 250 300 350

20

25

P

Q

Figure S1.

(b) P = 18, Q = 130 (c) P < 18

(d) The demand curve is unchanged and the supply

curve shifts upwards by 5 units.

P = 20, Q = 100

3 (a) (1) is demand and (2) is supply.

(b) slope = −1/3, vertical intercept = 16 (c) P = 3.6, Q = 37.

4 (a) 1850

(b) 5

5 (a) 12

(b) 20

(c) K 5 2 QL

L 2 Q

(b) 12 miles

(c) EatMeNow: y = 0.5 x + 9 , Deliver4U: y = 1.25 x

2 (a) P 5 10 15 20 25 Q D 325 250 175 100 25 Q S 0 50 100 150 200

6 Y 0 100 200

C + I^40 115

The lines are sketched in Figure S1.21.

(b) x 0 1 2 3 4 5 6 f ( x ) (^) − 9 − 4 − 1 0 − 1 − 4 − 9

The graph is sketched in Figure S2.2.

2800

3400

(2.4,3160)

LM

IS

34 r

Y

Figure S1.

ChApter 2

Section 2.

Practice Problems

1 (a) x = ± 10 (b) x = ± 2

(c) x = ±1.73 (d) x = ±2.

(e) No solution (f) No solution

(g) x = 0

2 (a) x = 10 and 1

2 (b) 3 2

x 5 2

(c) No solution (d) x = 2 and 3

3 (a) x^ − 1 0 1 2 3 4

f ( x ) (^21 5) − 3 − 3 5 21

The graph is sketched in Figure S2.1.

1 2

20 15 10 5

(^3 4) x

f ( x ) 5 4 x^2 2 12 x 1 5

y

21 25

Figure S2.

and to the left indicating a decrease in the equilibrium

values of both Y and r.

1 2 3 4 5 6 x

f ( x ) 5 2 x^2 1 6 x 2 9

y

22 24 26 28 210 212

Figure S2.

(c) x (^) − 2 − 1 0 1 2 3 4 f ( x ) (^) − 22 − 12 − 6 − 4 − 6 − 12 − 22

The graph is sketched in Figure S2.3.

1 2 3 4

f ( x ) 5 2 2 x^2 1 4 x 2 6

y

(^2221) x 25 210 215 220 225 230

Figure S2.

4 (a) The graph is sketched in Figure S2.4.

6

f ( x ) 5 2 x^2 2 11 x 2 6

y

x

26

1

( 114 ,^2 1698 )

(^22)

Figure S2.

8 (a) x < 0, x > 3 (b) x ≤ −1, x ≥ 1

(c) − 4 < x < 2

9 Q = 4, P = 36

10 P = 22, Q = 3

11 (a) $277 (b) 85

Exercise 2.1*

1 (a) ± 13 (b) −3, 13 (c) −2, 9

2 − 7 d , d

3 (a) 3, − 8 (b) 2

(c) 0, 3

(d) 1 6

(twice)

(e) 2, −1, 4

4 (a) 7, 8 (b) 0.22, 2.

(c) ± 3 (d) 7 (twice)

(e) No solutions (f) 10, 19

5 (a) x ≤ −8, x ≥ 8 (b) 1 ≤ x ≤ 9

(c) 1 2

27 , x , 2 (d) 5 3

21 # x # (e) x = − 1

6 c = 12; 6

7 k = 27

8 (a) x ≤ −3, x ≥ 4 (b) − 1 < x < 2

(c) x ≤ 1, 2 ≤ x ≤ 3 (d) 2 ≤ x < 3, x > 5

11 (a) P = 18 (b) B = 15

12 (b) between $18 and $40 (c) $

13 P = 5, Q = 65

Section 2.

Practice Problems

1 TR = 1000 Q − Q^2

The graph is sketched in Figure S2.8.

Q = 500 and P = 500

Q

TR 5 1000 Q 2 Q^2

0 1000

TR (500, 250 000)

Figure S2.

2 TC = 100 + 2 Q

Q

AC 5 1 2

The graph of the total cost function is sketched in

Figure S2.9.

Q

TC

slope 5 2

intercept 5 100

Figure S2.

The graph of the average cost function is sketched in

Figure S2.10.

AC (^5 100) Q 1 2

AC 12 10 8 6 4 2

(^50 100 150 200) Q

Figure S2.

3 π = − Q^2 + 18 Q − 25

The graph of the profit function is sketched in

Figure S2.11.

31

4 14 1.52 16.

(9, 56) (^) p 5 2 Q (^2 1 18) Q 2 25

Q

p

225

Figure S2.

(a) Q = 4 and 14 (b) Q = 9; π = 56

Exercise 2.

1 (a) P = 50; TR = 500

(b) TC = 150

(c) π = 350

2 (a) 4 Q

(b) 7

(c) 10 Q − 4 Q^2

The graphs are sketched in Figures S2.12, S2.13 and

S2.14.

TR TR 5 4 Q

Q

Figure S2.

TR TR 5 7 7

Q

Figure S2.

TR (1.25, 6.25)

0 2.5 Q

TR 5 10 Q 2 4 Q^2

Figure S2.

3 (a) P = 50 − 4 Q

(b) Q

P 510

4 TC = 500 + 10 Q ; 500

AC 5 Q 1 10

The graphs are sketched in Figures S2.15 and S2.16.

TC

Q

slope 5 10

intercept 5 500

Figure S2.

Q

AC

10

AC (^5 500) Q 1 10

Figure S2.

5 TC = Q^2 + Q + 1;

Q

AC 5 Q 1 1 11

The graphs are sketched in Figures S2.17 and S2.18.

TC

1

Q

TC 5 Q^2 1 Q 1 1

Figure S2.

(b) f ( K , L ) = 50 K 1/4 L 3/ f (l K , l L ) = 50(l K )1/4(l L )3/

= 50 l1/4 K 1/4l3/4 L 3/4^ (rule 4)

= (l1/4l3/4)(50 K 1/4 L 3/4)

= l^1 f ( K , L ) (rule 1)

Constant returns to scale.

5 (1) (a) 3 (b) 2 (c) 1 (d) 0

(e) − 1 (f) − 2

(2) Same as part (1).

6 (a) log b

xz y (b) log b ( x^4 y^2 )

7 (a) x = 1.77 (b) x = 1

Exercise 2.

1 (a) 64 (b) 2 (c) 1/3 (d) 1

(e) 1 (f) 6 (g) 4 (h) 1/

2 (a) a^11 (b) b^5 (c) c^6 (d) x^2 y^2

(e) x^3 y^6 (f) y −^4 (g) x^4 (h) f^7 (i) y^3 ( j) x^5

3 (a) x

(^12) (b) x −^2 (c) x

(^13) (d) x −^1 (e) x 212 (f) x

(^32)

4 (a) 3600 (b) 200 000

5 The functions in parts (a) and (b) are homogeneous

of degree 7/12 and 2, respectively, so (a) displays

decreasing returns to scale and (b) displays increasing

returns to scale. The function in part (c) is not

homogeneous.

6 (a) 2 (b) − 1 (c) − 3 (d) 6 (e) 1 / 2 (f) 0

7 (a) 2 (b) 1 (c) 0 (d) 1 /2 (e) − 1

8 (a) log b ( xz ) (b) log b x

3 y^2

(c) log b y z^3

9 (a) 2 log b x + log b y (b) log b x − 2 log b y

(c) 2 log b x + 7 log b y

10 (a) 1.29 (b) 1.70 (c) 6.03 (d) 8.

11 (1) (a) 5 (b) 1 2

(2) log b x

2 y^4 (3) 69.

12 (1) (a) 4 (b) − 2 (c) 2

(2) (a) x^3 y (b) x^15 y^5 (c) x^2 y^2

13 (a) 98, 115, 125, 134, 140, 146

(b) The graph is sketched in Figure S2.20.

Figure S2.

The number of complaints increases but at a

decreasing rate.

Exercise 2.3*

1 (a) 8 (b) 1/32 (c) 625 (d) 2 1 4

(e) 2/

2 (a) y^2 (b) xy^2 (c) x^4 y^2 (d) 1 (e) 2 (f) 5 pq^2 3 (a) x −^7 (b) x 1/4^ (c) x −3/2^ (d) 2 x 11/2^ (e) 8 x −4/ 4 3 x^3 y^7 5 A [ b (l K )a^ + (1 − b )(l L )a]1/a

= A [ b la K a^ + (1 − b )la L a]1/a^ (rule 4)

= A [(la)( bK a^ + (1 − b ) L a)]1/a^ (factorise)

= A (la)1/a^ [ bK a^ + (1 − b ) L a]1/a^ (rule 4)

= l A [bKa^ + (1 − b ) L a]1/a^ (rule 3)

so f (l K , l L ) = l^1 f ( K , L ) as required.

6 (a) 2/3 (b) 3 (c) 1 /

7 (a) log b (1) (b) log b

x^3 y^2 (c)^ log b

x^5 y z^2 (d) log b ( b^2 x^3 ) 8 (a) 2 log b x + 3 log b y + 4 log b z (b) 4 log b x − 2 log b y − 5 log b z

(c) 1 2

log b x 2 log b y 2 log b z

N

140

120

100

80

60

40

20

1 2 3 4 5 6 t

9 (a) − q (b) 2 p + q (c) q − 4 r (d) p + q + 2 r

10 (a) 78.31 (b) 1.48 (c) 3 (d) 0.

11 (a) x ≤ 0.386 (3 dp)

(b) x > 14.

12 x = 3

13 (2) 2 3

; constant returns to scale.

14 (1) (a)

3 (b)^

(2) 1 x^2 7

y 5

15 log^10 x^2 2 log 10

5 log (^10)

5 log (^10)

y 2 log 10 10

2 1

x^2 y

x^4 y

16 (a) L 5

Q

AK a

1/b (b) L 5 ( Q A^ /^ )

a (^2) bK a 1 2 b

1/a

17 (a) 1 (b) 2 (c) n (d) 3

Section 2.

Practice Problems

1 x (^) − 3 − 2 − 1 0 1 2 3

3 x^ 0.04 0.11 0.33 1 3 9 27 3 − x^^27 9 3 1 0.33^ 0.11^ 0.

The graphs of 3 x^ and 3− x^ are sketched in Figures S2.

and S2.22, respectively.

y

1 x

3

6

9

12

15

18

21

24

27

23 22 21 2 3

y 5 3 x

Figure S2.

x

y

21 1

3

6

9

12

15

18

21

24

27

23 22 2 3

y 5 32 x

Figure S2.

2 (a) 2. 718 145 927, 2.718 268 237, 2.718 280 469

(b) 2.718 281 828 ; values in part (a) are getting closer

to that of part (b).

3 (1) (a) 0.07% (b) 1.35% (c) 18.44% (d) 50.06% (2) 55%

(3) A graph of y against t , based on the information

obtained in parts (1) and (2), is sketched in

Figure S2.23. This shows that, after a slow start,

microwave ownership grows rapidly between

t = 10 and 30. However, the rate of growth then

decreases as the market approaches its saturation

level of 55%.

t

y 55 50 45 40 35 30 25 20 15 10 5 5 10 15 20 25 30 35 40 45 50

55 y (^51 1) 800e 2 0.3 t

Figure S2.

4 (a) 2 ln a + 3 ln b (b) ln^

x 1/ y^3

5 (a) $5 million and $3.7 million

(b) 4 years

6 (a) 3 y^2 + 13 y − 10

(b) Put y = e x^ in part (a) to deduce −0.405.

7 (a) b

x a

(^1) ln y 5 (b)^

x 5 ln(e y^ 2 3)

8 (a) 6 (b) −1 or 2 (c) 25 (d) 0.26 (e) ±1.

9 P^^5 k 1 1 k 2

ln( A / B )

Multiple Choice Questions

1 B 2 D 3 C

4 B 5 C 6 D

7 C 8 A 9 A

10 B 11 D 12 E

13 D 14 B 15 A

Examination Questions

1 (a) 2000

(b) 100

(c) 64

(d) Show f (l K , l L ) = l7/6^ f ( K , L ); increasing returns

to scale

2 π = − Q^2 + 6 Q − 8. A graph of the profit function is

sketched in Figure S2.

5 (a) (i) x

6

y

log a

(ii) − 2

(b) Each year the price is multiplied by the same

factor, 1.1; A = 1000; b = 1.

(i) $

(ii) At the beginning of Year 22

6 (a) TC = 14 + 2 Q ; AC =

Q

1 2. The graphs are

sketched in Figures S2.27 and S2.28.

y 1

2

210

29

28

27

26

25

24

23

22

21 1 2 3 4 5 6 x

Figure S2.

(a) Q = 2, 4

(b) 1

(c) Shifts vertically upwards

3 (a) P = 100, Q = 6

(b) P = 101.79, Q = 5.88; consumer pays $1.79 and

producer pays $3.

4 (a) TR = 10 QQ^2

(b) 5 ≤ P ≤ 7

TC

14

y

Q

Figure S2.

AC

2

Q

Figure S2.

(b) When Q = 0 , there is no revenue and the only

costs are the fixed ones which are given to be 14,

so the profit is 0 − 14 = − 14. Substituting Q = 0

into π = aQ^2 + bQ + c gives π = c , so c must

equal − 14.

(c) a + b = 8, 6 a + b = 3; a = −1, b = 9

(d) Q = 2, 7; max profit is 6.

(e) TR = − Q^2 + 11 Q ; P + Q = 11

7 (a) (i) a

5 b 3

(ii) 4 x^2 y^4 (iii) 6

(iv) log b ( xy^2 z^2 )

(b) −1.

(c) (i) 659,

(ii) 3.

(iii) The sales graph is sketched in Figure S2.29.

7 (a) 5.7% increase (b) 18.4% increase

(c) 12.0% increase

8 The complete set of ‘constant Year 2 prices’ is listed

in Table S3.1.

During Year 1/2 salaries remain unchanged in real

terms. However, since Year 2 salaries have outpaced

inflation with steady increases in real terms.

Table S3.

Year 1 2 3 4 5 Real salaries 18.1 18.1 19.0 21.7 23.

Exercise 3.

1 (a) 7 20

(b) 22 25

(c) 2 1 2

(d) 7 40

(e) 1 500 2 (a) 1.2 (b) 7.04 (c) 2190.24 (d) 62. 3 (a) 60% (b) 22 4 (a) 1.19 (b) 3.5 (c) 0.98 (d) 0.

5 (a) 4% increase (b) 42% increase

(c) 14% decrease (d) 245% increase

(e) 0.25% increase (f) 96% decrease

6 (a) $18.20 (b) 119 244 (c) $101. (d) $1610 (e) $15 640 7 35% 8 (a) $15.50 (b) $10.54 (c) 32% 9 $862.

10 (a) $26 100 (b) 31% (nearest percentage)

11 (a) 37.5% increase (b) 8.9% increase

(c) 6.25% decrease

12 $11.6 million

Prices rise consistently over the past five years at an

steadily increasing rate.

14 (a) Jan (b) 4800 (c) 133

(2) (a) 30% (b) 52.3% (c) 13.1% (d) 9.4% (3) (a) 25% (b) 44% (c) 10.6% (d) 11.1%

(4) Public transport costs have risen at a faster rate

than private transport throughout the period

1995–2010. However, for the final five years there

are signs that the trend has stopped and has

possibly reversed.

16 964, 100, 179, 750; e.g. seasonal variations.

17 (a) 83.3, 100, 91.7, 116.7, 125, 147. (b) 64.8 (c) Year 5

2 million

S

t

Figure 2.

8 (a) A = 50,000; b = 0.95; A is the initial price

(b) r = −0.

(c) Use rules to logs to obtain ln V = −0.0513 t + ln 50000

so it is a line with gradient −0.0513 and vertical

intercept 10.8.

9 (a)

Q

1 0.5 1 0.04 Q ;

Q

(b) A = IT; B = Printing; C = Retail

(c) 2.5 < Q < 10

ChApter 3

Section 3.

Practice Problems

1 (a) $0.29 (b) $937.50 (c) $139.

2 (a) 10% (b) $1564 (c) $

3 (a) $7.345 million (b) $76 billion (c) 7%

4 (a) 8750 (b) 750 (c) 80%

5 (a) 82% increase (b) 58% decrease

(c) 45% decrease