



































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
The main points which I found very interesting are: Regression on Principal Components, Independent Variables, Multiple Regression Analysis, Principal Components, Stochastic Model, Standard Deviation, Matrix of Transformed Data, Regression Model, Prediction Model
Typology: Study notes
1 / 43
This page cannot be seen from the preview
Don't miss anything!
Regression on Principal Components 3
i,j
th
th
j
th
i
th
Regression on Principal Components 4 ( (^) ij j ) ij j X x x s − = i i y = Y − y y j x
Regression on Principal Components 6 Y = Z Β 1 p i j ij j y β z = = or ∑
The annual rainfall in mm for 10 stations and observed basin annual yield (Y) in mm 9
1
2
3
4
5
6
7
8
9
10
10 Example – 1 (Contd.) (19 1 )^ (19 10 ) (10 1 ) Y X
= Β ( ) 1 ˆ '^ ' X X X Y − Β =
1
2
4
5
6
7
8
9
12 Example – 1 (Contd.) ( (^) ij j ) ij j X x x s − = i i y = Y − y Station Mean Std.dev.
1 1873.2 434.
2 3839.9 927.
3 5925.8 1250.
4 4436.0 1846.
5 6068.9 914.
6 4441.0 1091.
7 3254.0 608.
8 3307.3 599.
9 2969.7 621.
10 2859.6 462.
Standardized annual rainfall and centered observed basin annual yield (Y). 13
1
2
3
4
5
6
7
8
9
10
15 Example – 1 (Contd.) Eigenvalues 4.945 2.631 1.047 0.364 0.307 0.257 0.205 0.140 0.063 0. Eigenvectors 0.390 -0.165 0.211 -0.191 0.451 -0.304 0.149 -0.043 -0.644 -0. 0.381 -0.188 -0.053 -0.543 -0.127 0.215 -0.265 -0.574 0.189 0. 0.393 0.029 0.382 0.235 0.074 -0.128 -0.328 0.319 0.227 0. 0.298 -0.321 -0.390 -0.111 0.246 0.400 0.425 0.437 0.210 0. 0.404 -0.065 0.179 -0.121 -0.589 -0.056 -0.093 0.393 -0.013 -0. 0.371 -0.161 -0.229 0.546 -0.116 -0.394 0.301 -0.402 0.241 -0. 0.122 0.462 0.521 -0.117 0.237 0.148 0.428 -0.136 0.393 -0. 0.317 0.338 -0.122 0.444 0.069 0.603 -0.241 -0.134 -0.333 -0. 0.136 0.529 -0.237 -0.201 -0.412 -0.110 0.388 0.031 -0.275 0. 0.160 0.443 -0.477 -0.192 0.351 -0.358 -0.358 0.155 0.235 -0.
( S^ −^ λ I^ ) X =^0
16 Example – 1 (Contd.) Eigenvalues % variance explained 4.945 49. 2.631 26. 1.047 10. 0.364 3. 0.307 3. 0.257 2. 0.205 2. 0.140 1. 0.063 0. 0.042 0.
( ) j Trace S λ
18 Example – 1 (Contd.)
- 0.390 -0.165 0.211 -0.191 0.451 -0. Z = X A - 0.381 -0.188 -0.053 -0.543 -0.127 0. - 0.393 0.029 0.382 0.235 0.074 -0. - 0.298 -0.321 -0.390 -0.111 0.246 0. - 0.404 -0.065 0.179 -0.121 -0.589 -0. - 0.371 -0.161 -0.229 0.546 -0.116 -0. - 0.122 0.462 0.521 -0.117 0.237 0. - 0.317 0.338 -0.122 0.444 0.069 0. - 0.136 0.529 -0.237 -0.201 -0.412 -0. - 0.160 0.443 -0.477 -0.192 0.351 -0.
19 Example – 1 (Contd.) Y = Z Β ( ) 1 ˆ '^ ' Z Z Z Y − Β = -314.
-463. -500. -629. -554.
-397.
-224.
-70. -328.
Y =
21 Example – 1 (Contd.)
c
c
c
22 Example – 1 (Contd.) Eigenvalues % variance explained 4.945 49. 2.631 26. 1.047 10. 0.364 3. 0.307 3. 0.257 2. 0.205 2. 0.140 1. 0.063 0. 0.042 0.