Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Regression on Principal Components - Stochastic Hydrology - Lecture Notes, Study notes of Mathematical Statistics

The main points which I found very interesting are: Regression on Principal Components, Independent Variables, Multiple Regression Analysis, Principal Components, Stochastic Model, Standard Deviation, Matrix of Transformed Data, Regression Model, Prediction Model

Typology: Study notes

2012/2013

Uploaded on 04/20/2013

sathyanna
sathyanna 🇮🇳

4.4

(8)

103 documents

1 / 43

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Regression on Principal components:
In the development of a stochastic model for a
dependent variable Y, the first step usually is to do
PCA on the independent variables.
The derived principal components are used as
independent variables in a multiple regression
analysis with the dependent variable Y.
Regression on Principal Components
3%
Docsity.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b

Partial preview of the text

Download Regression on Principal Components - Stochastic Hydrology - Lecture Notes and more Study notes Mathematical Statistics in PDF only on Docsity!

Regression on Principal components:

  • In the development of a stochastic model for a

dependent variable Y, the first step usually is to do

PCA on the independent variables.

  • The derived principal components are used as

independent variables in a multiple regression

analysis with the dependent variable Y.

Regression on Principal Components 3

Procedure:

  • Independent variables are standardized.

where X

i,j

is the i

th

observation on the j

th

variable,

and s

j

are the mean and standard deviation of the j

th

variable.

  • Dependant variables are centered.

where Y

i

is the i

th

observation on y, is the mean of

y.

Regression on Principal Components 4 ( (^) ij j ) ij j X x x s − = i i y = Yy y j x

  • The regression model is

Where

Y is nx1 vector of n observations of the centered

dependent variable,

Z is nxp matrix of n values for transformed data of p

variables, and

Β is a px1 vector of unknown parameters.

Regression on Principal Components 6 Y = Z Β 1 p i j ij j y β z = = or ∑

  • The matrix Β is estimated as Regression on Principal Components 7 ( ) 1 ˆ '^ ' Z Z Z Y − Β =

The annual rainfall in mm for 10 stations and observed basin annual yield (Y) in mm 9

Year x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

10

y

A regression equation is obtained using all the 10

stations annual rainfall data is as follows

The multiple linear regression equation is as follows.

10 Example – 1 (Contd.) (19 1 )^ (19 10 ) (10 1 ) Y X

× × ×

= Β ( ) 1 ˆ '^ ' X X X Y − Β =

Y = 782.4 + 0.1861 x

1

+ 0.0484 x

2

  • 0.0198 x 3

0.0019 x

4

+ 0.1196 x

5

+ 0.1555 x

6

+ 0.0232 x

7

0.1948 x

8

+ 0.0799 x

9

  • 0.0041 x 10

12 Example – 1 (Contd.) ( (^) ij j ) ij j X x x s − = i i y = Yy Station Mean Std.dev.

x

1 1873.2 434.

x

2 3839.9 927.

x

3 5925.8 1250.

x

4 4436.0 1846.

x

5 6068.9 914.

x

6 4441.0 1091.

x

7 3254.0 608.

x

8 3307.3 599.

x

9 2969.7 621.

x

10 2859.6 462.

y^3569 -

Standardized annual rainfall and centered observed basin annual yield (Y). 13

Year x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

10

y

The eigenvalues and eigenvectors for the covariance

matrix

15 Example – 1 (Contd.) Eigenvalues 4.945 2.631 1.047 0.364 0.307 0.257 0.205 0.140 0.063 0. Eigenvectors 0.390 -0.165 0.211 -0.191 0.451 -0.304 0.149 -0.043 -0.644 -0. 0.381 -0.188 -0.053 -0.543 -0.127 0.215 -0.265 -0.574 0.189 0. 0.393 0.029 0.382 0.235 0.074 -0.128 -0.328 0.319 0.227 0. 0.298 -0.321 -0.390 -0.111 0.246 0.400 0.425 0.437 0.210 0. 0.404 -0.065 0.179 -0.121 -0.589 -0.056 -0.093 0.393 -0.013 -0. 0.371 -0.161 -0.229 0.546 -0.116 -0.394 0.301 -0.402 0.241 -0. 0.122 0.462 0.521 -0.117 0.237 0.148 0.428 -0.136 0.393 -0. 0.317 0.338 -0.122 0.444 0.069 0.603 -0.241 -0.134 -0.333 -0. 0.136 0.529 -0.237 -0.201 -0.412 -0.110 0.388 0.031 -0.275 0. 0.160 0.443 -0.477 -0.192 0.351 -0.358 -0.358 0.155 0.235 -0.

S − λ I = 0

( S^ −^ λ I^ ) X =^0

The eigenvalues and % variance explained:

16 Example – 1 (Contd.) Eigenvalues % variance explained 4.945 49. 2.631 26. 1.047 10. 0.364 3. 0.307 3. 0.257 2. 0.205 2. 0.140 1. 0.063 0. 0.042 0.

> 95% variance

explained by first

6 principal

components

( ) j Trace S λ

18 Example – 1 (Contd.)

 - 0.390 -0.165 0.211 -0.191 0.451 -0. Z = X A - 0.381 -0.188 -0.053 -0.543 -0.127 0. - 0.393 0.029 0.382 0.235 0.074 -0. - 0.298 -0.321 -0.390 -0.111 0.246 0. - 0.404 -0.065 0.179 -0.121 -0.589 -0. - 0.371 -0.161 -0.229 0.546 -0.116 -0. - 0.122 0.462 0.521 -0.117 0.237 0. - 0.317 0.338 -0.122 0.444 0.069 0. - 0.136 0.529 -0.237 -0.201 -0.412 -0. - 0.160 0.443 -0.477 -0.192 0.351 -0. 
  • 0.17 0.36 -0.34 -0.82 -0.39 -0.73 -0.08 -0.95 -1.29 -1.
  • 0.89 -0.18 1.50 -0.60 0.95 -0.02 0.72 0.24 -0.17 -0.
  • 0.27 0.55 1.17 -0.87 0.23 0.35 2.01 1.83 0.96 0.
  • 0.29 -0.57 0.91 -0.54 0.63 0.34 1.64 1.37 0.77 0.
  • 0.49 0.42 0.51 -0.78 0.66 -0.44 1.06 0.42 1.78 1.
  • -0.36 -1.21 -0.01 -0.56 -0.51 -0.73 -0.28 -1.45 -0.54 -0.
  • -1.13 -1.60 -0.70 -0.80 -1.01 -1.22 1.31 -0.50 0.13 0.
  • -0.93 -0.90 -1.58 -0.95 -1.04 -0.81 -0.79 -2.33 -1.64 -2.
  • -1.20 -1.50 -1.32 -1.10 -1.47 -0.81 -0.72 -0.61 -0.06 -0.
  • -0.62 0.38 -0.01 -0.44 0.87 0.64 -0.11 0.59 1.60 0.
  • -1.05 -0.23 -0.62 -0.63 -0.92 -0.59 -0.97 -0.48 -0.63 1.
  • -0.49 0.91 0.37 1.05 1.36 0.22 -0.36 0.60 0.28 -0.
    • 0.19 0.77 -0.20 0.92 0.00 -0.72 -1.07 -0.86 -1.32 -0.
    • 0.23 0.00 0.08 0.66 -0.21 -0.38 -0.36 1.02 -0.62 -0.
    • 0.51 0.37 0.65 1.24 -0.03 1.95 -1.30 0.16 -0.90 -0.
    • 2.94 2.47 1.78 2.50 2.53 2.77 -0.60 0.36 -0.76 0.
  • -0.93 -0.96 -1.42 0.29 -1.01 0.27 -1.07 0.31 0.69 1.
  • -0.42 -0.14 -1.38 0.28 -0.78 -0.60 -0.11 -0.35 0.66 0.
    • 1.15 1.07 0.62 1.15 0.14 0.51 1.06 0.63 1.07 1. - 10 x Z =
      • 19 x
  • -­‐1.283 -­‐1.278 1.259 -­‐0.492 0.139 0. Z = X A =
    • 1.133 0.192 1.776 0.367 -­‐0.068 -­‐0.
    • 1.825 2.512 0.974 0.410 0.245 0.
    • 1.273 1.972 0.998 0.826 0.040 0.
    • 1.176 2.403 0.134 -­‐1.034 -­‐0.232 -­‐0.
  • -­‐1.907 -­‐0.547 0.724 0.067 0.087 -­‐0.
  • -­‐2.395 1.519 0.673 0.048 0.429 0.
  • -­‐3.779 -­‐2.327 1.050 -­‐0.058 -­‐0.483 -­‐0.
  • -­‐3.115 0.333 -­‐0.480 0.475 -­‐0.042 -­‐0.
    • 0.830 1.247 -­‐0.735 0.055 -­‐1.484 -­‐0.
  • -­‐1.700 0.094 -­‐1.054 -­‐0.154 0.348 -­‐0.
    • 1.345 -­‐0.585 -­‐0.305 -­‐0.126 -­‐1.214 1.
  • -­‐0.430 -­‐2.241 0.012 -­‐0.817 0.203 0.
    • 0.243 -­‐0.433 -­‐0.169 0.391 0.593 1.
    • 1.336 -­‐2.171 -­‐0.751 1.326 0.157 -­‐0.
    • 5.527 -­‐2.835 -­‐0.199 -­‐0.183 0.169 -­‐0.
  • -­‐1.202 0.857 -­‐2.516 0.433 0.246 -­‐0.
  • -­‐1.219 0.366 -­‐0.975 -­‐0.743 0.059 0.
    • 2.341 0.921 -­‐0.416 -­‐0.792 0.808 0.081 19 x

Regression analysis is performed on these

components

19 Example – 1 (Contd.) Y = Z Β ( ) 1 ˆ '^ ' Z Z Z Y − Β = -314.

-463. -500. -629. -554.

-397.

-224.

-70. -328.

Y =

The regression equation is

21 Example – 1 (Contd.)

y = 192.1569 P

c

+ 13.29536 P

c

  • 33.1304 P c

73.92323 P

c

  • 64.0569 P c - 15.6921 P c 2 R = 0.

The eigenvalues and % variance explained is

22 Example – 1 (Contd.) Eigenvalues % variance explained 4.945 49. 2.631 26. 1.047 10. 0.364 3. 0.307 3. 0.257 2. 0.205 2. 0.140 1. 0.063 0. 0.042 0.

> 85% variance

explained by first

3 principal

components