Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

RCD USD – Ultimate Strength Design Notes, Study notes of Reinforced Concrete Design

Covers Ultimate Strength Design (USD) fundamentals based on factored loads Includes design philosophies, strength reduction factors, and load combinations Sample problems on beams and columns using USD approach Follows ACI code provisions for limit state design

Typology: Study notes

2023/2024

Available from 06/06/2025

imwinter
imwinter 🇵🇭

5

(1)

148 documents

1 / 28

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c

Partial preview of the text

Download RCD USD – Ultimate Strength Design Notes and more Study notes Reinforced Concrete Design in PDF only on Docsity!

: > Ultimate Strength Design (USD) meétnod Ss strain io 9-003 concrete pe iy 0-865 / / Pe TL. «=| 7%. A LEeeee aw d | Na. by rare ania ti od igi L e —_ T TASTY OF ASEL SS a Rd roaheaiait ‘ -—— b——_} : \. | paleo] = STRAIN STRESS | EQUIVALENT STRESS DIAGRAM) | pDiseram BLOCK DARA) . mse ; | palanced = under reinforced condition Zr over -rcinpocrd = > i 7y | | 1 4 9 o e|. tf x steel yieldsx [| | wan wisttel oes >| —»>) - under cessed = sudden failure i not yield - excessive deflection | = most efFiciem, ~ corereté will fail (no =») - ctacks Cs iiizer puke moment resistance ) = pas warning Signs | capacity - oe steel (under stressed) rd - yield point istee) - concrete is under : ase ” wtressed | E % py 5 whitey’ ‘conctaant Ue strain ee qe. mPa pa : Net Tenaite cai" g wo4 fe 228 0.85, Lob Lea = ety, 0-05 np < ge < 5 0.5 2O2(fe5262-| ery < e4xo-e0s | o-e5 +025 an fic 2 5S. 0-05 Et Z 0-008 0-90 x Stept for eegular vections (Under /over reinporces ) ~ aa assume cee! Yields (C=T), 3. muse Gmai - po-B5fcab (a-4) | Adee Pd | | 2 9% Jestcb “ids oP TA B. Accume cbtel doer not yield a | 0.8550 (cB)b> pc [eetae) a 07 Br | im | op . © : | 9. a oP! ~)) Goo(d-c) Pi ete Ha t 7 = | f 0(d-c + §6 C to. fo = CUSED 5 Gr ay F sip FS 7 FY > correct assumption (#) 1 Repeat @-3 fe < $Y, wrong ascumption (6) ep es 2 HH : 7 oO. &t (<9 1 compare yor p t= €¢ = goe(a-e) ene * @, reclucton factor (phi) Role oF reduction Factor - imperfection in material ~ stress canied = assumptions iA design ‘calculations - design loadings # actual loads - workmanship ( Fron plans to actual! conctuction) pit PROBLEM 1 Determine the ultimate motnent capacity of the wean section chown pelow: Use Fic = 2IMPA H FY = ais MPa- : 2 if i | acs FED (3) 420] L NA.) fe} | As 7 SOB = 1844-25048 mn? i | 3-28eng in ‘g = 21mPO : fy > 415 nea aan | Bi > 0:85 ALSume SLeel Wielac ( Fé > FY) [ 3 Cnt L : | | I | [ as ASY seb (415), oh hag A “| 9.85¢¢b 0°85(21/) (320) | fl 038s a {34-21 mm JA) 2 157. 89 9m | pee GaLHO) , goo(see | c tT BB | fo = 995/228 mPa > assmpa /correct, ascumption | . i if oo f— gnome BL | ! (0054 oes OP ='0. 898 [FY p nus om b (0-865 av (4--*)) | :B 0-05 (21) (320) ( 4¢0--B) | x10°° [mus BBioa wT | 4 PRET T TRANS rV we a (i | PROBLEM 3. Determine tne Ultimate Moment eapacity @ balanced condition se* Z21MPA, fy¥7 415 MPA, 3-ZEmmgy dz 420mm , oF te beam in Provlem 1. Uce AS = 1587 @ Balanced condition | ( pe FY) fo = fy Wa c) ays c Ge0(420- 2) gig ec c= 248 2%emm |A\ b + Baomm , 6, = 0-85 Ey or esl # ety -. B= 0-65 qe ef > 0-85[4) = 2) 024mm Mu= 0-65 | p-85/al) [BI(220) (420 -B) Mu = 4. FO IeN= ! I : i 7] ¥ Stepy for Balanced - Condition les 1 fr Fy iTS woo( d-€). Fy 2. a= epi 3 Eg = € = ety B41 Gor 4. Mu = > aon mu = 2 (0 5 scab (4-%)) 4 Ht x Stepr re Irregular. Cectionc For T~ ‘beam CT (Assume Steel ‘Yielde) 0-BSfe Aconc > ACFY — Aeone = DESpe Ap phe mate (@ plange) “AR SAC f. a 74s (@ wev) — be alo.= Acone + (a7 tf) tw = Ae - AF ig ie ak ay Tm es ler 2 { || F tafost itey o 7} d ety ==> rr msg [age ae yal-3)] For Trang uler Aco = 7 OA) 3 ** ‘my = aC ‘BSF Acong,| ( (a- #2) oe. PPTTETC Nga at rrr 4 i? nd Bo@ | act AB lad ina le Mel et alla tastes aie 8 # IMregular. sections: : \ | ' T-beam (beam, then sla) in consiuction True~T-beam (lab & beam , sabay) - Rectangular to Tocam Rectangular beam (From beam design) | - T-veam to rectangular in| ot ye not okauy | PROBLEM 1 Determine tne ultimate moment, capacity ie T-beam chown below. Use s'o 3Z24mPa, fy= 415 MPS, fr 0-85 yf we eeuuuuuE i Goo" Zin Peonoreaey f'c 24 mea - 7 ahh CIEL TLL | po | |A%E AIS, mPa | br 70° 85 Dee dF 825 mm z Noa q JLejyy ft \\ As = -Zopomm 2 & 2s" 3 “ $= 200mm? 7 ; ce ae < 3 e +5 me yy goo"™ > ea assume steel vies eee rail | 5 | { 0-B55'¢ Acone = ASFY ebay A _ 2000415). | I conc 9-85 (24) | maa Acone * 40,080. 27451 mn* Bl Ag = G@00(100) = G0, COD mm * At > Aconc -- aQ<|0o (@ Flange) 3 p= @oo™ iT vevevevuvur Acont = ao gy Fe in , _ Aask Fe ce e - a= Goo =o , as @F- 810mm Bi | C299-F74nm 6) | | | . | oe sank) 7 (nee EE Bas 7 0:009205 = ra 1} pr 4 fate, fer 1844 . 219 MPS 7 HIsimea oe ey it EE = 0S, 0.002075 B | 4 mu 9 | oesge heoce ( 4-4) k - 0.90 | 089(24) B Mee Mu = 217-448 kN-m " €4 2 0:005 -- g 20.90 aS sf] % SS Pe ere eee @ Stee) [tension AYY = Aytnaya Se @0,000(50) + 200 63) (‘100 4 0-5fE3) | (0000 + 300[E] Ni ¥ = 70.193 mm {x} | = Basss(a-y) Mu nee | son (22102) \es-w a Mu = 2UB- 489 KN-m M if Any oer PROBLEM 3 Determine te required arto oF conccte BNA AC in valence condition of the veam choo in Probiem 1% 2. {i | @ balanced \ i pond Acones Ar + tw(¥) | " on G00 (d-c) _| = 1@@, 0m +, 3° gee tare? sy | [Rewes_ 79,990 (48 me), [B) G00( 325-C) ns 0-85,5'c Acone > Atval FY erst a Acbal C= 192-118 By a uu 4 Ta* GB Ae pai > 3862-869 am™ | = 0-85 /5) A = 103 300 mm y= 3 - 300mm a ; N ‘ i | { yh A a Tachi s a er ae a a DESIGN OF RECTANGULAR BEAM Rus coerricient of redictance - MONA ve 1 toG@ Mudes = designing factored moment = - 2-8 (best since = 0.00 (under tension controlled) ductile eaiture) [ 2 AR ae = pod] P+ steel ratio ba * Ductility requirement pyri frin = Prega = Pmax — usepPreadl Preq'd < Prin whe p> pmin jncréawe the «ection or ch Preqia = pmax design ar doubly reinporced ( DRB) Prega > 0.06 42 [ to fy Bem Teg) iz MG fy. 1 | Brie Prin = ae out not ea thar a ad inas madalec mag_govern hes het : I pmax - | 00st 5 Es 0.004 5 cr pa Derivation For (max = =| : 6.003 7 To Co dee | eet. IS e bos 0004 | 9.854 (.¢ Br) B= ASmax " te +o7d- 0-85 f¢(SaP) Br * Prax ¥A fy | | = at | ‘ d= er Pmax = [os 6] czy (transition) 0-004 0- 004 ( transition) 0-005 (under jencin controlted) 3} - C = 3A (tension controited ) minimum pacing Requirement 50m" $ 2 ade 4 dogg. PROBLEM: 2- Determine the Fackored derigning moments op the \restrainad wean snown. The beam rection i¢ 4oomm x OO mm. \ D= lorN/m (excl. beam wt) p = Wokn/n L = [4 kN/m (uniform) ee Ee ae oe ee ee m | an @ lert support, 5 4 j Wor = lot 24(0-4)(0-6) + 15. FORN/M SX Py RN] | 3 i yw fee ECOG xr FS | L? e2 | 2 7 af pe ee =-13099125 FF sm ge XS 14 x 3x i be aext - | 15.96(8)? , yacey? | Mp 7 - 85- 30114583 kN [Bl muive =~ 74.007 kN-m [El mu = 44D > 4461 = = pa.spsuodz KN-m Mu = 420 + 4GL = 4-288) + UIE). =.-221-9000 417 RNTM v Mui = 7221 90 kN-M @ righ pport | Shai jeg e* * ay (xt 5)?(8-x) | age, (RD, mp = 90-0B02083 kN-m [FE] M+ F4COT eNom El | mu = -4D os aE = 120-0812292 kN-m i Mu = -2D & Pol = /1-2{E} +) OG) + 227-S302917 pn-m - ~- [eo Migs) = 227-5362017 Nm | TET — 4 | ” @ mid Support re t= 48)?! 24 24 ML = 97-393 KN-M PUTT RTPA usirg Tree- Moment Equation P okN/n Poy m wy |, el a7 5t* 5” x 3 bt 37x - 5 ~ GAG | ( 2X59) [ 92 _ (osx)? | dx = 100.9375 L lb 8 } | — 3 t Gab of x(a) 2_ sx)" = 6B.9625 fee [s coma" | 68.96 15.F0(8)? $ iuMa 4 8mMB + + 08-9025 7O lwMa + mg = - 2080.2425 — eg#T | 15. (8)? BMA 4 (OMG + —a + (06.5375 70, BMA + IOMB = - 2123-8195 —w eg#7Z MA = - BS- 20N45OS KN-m FAL y postive Mpei= -90-03802083 kN-™ |B) @ whole section / beam Me -O | Ra (B) + MO-ma - 15-FH(BX4) - T(4)(F7( 13 x9) =O i - Bl + Bl + 5-70 (04) + Y2(@)(3)(1) A > g Ra = 03-577 kN [Cl 2Pv 70 Ra t Re ~ 15-46 ( B)- Z(G)(3) =O pe > #1502 IN Bl , DESIGN OF ONE-WAY SLAB ) Minimum thickness oF Slab bs - Simply supported 7. “Ye 22 oe way ) - one-erd continuous Lay bye 52 4wo wary - Botn-end continuous = Y/2g f } - cantiever “ho w) cone. cover = 20mm ) “ y Wzownee , moc ip x For sy otner than 42omPpa, modipy by multiplying w/ (0-40 =) ¥, For temperature bare | fy < 420 mPa Asmin 7 0-002 0% 3 DteAg fi 2 420 mPa Asin 20-0018 ( “7°/4y.) 24 PROBLEM 1: Design a cinpty supporied 2.@0mM one-way slab carrying super - imposed loads . 1 DL = 2 kPa \ wor [2 4 24 (0-108) ltr }- 4-52 kN/m } LL = 4.80«Pa Wi > 4B0Ka (Im) 4-BOkN/m ’ fc 21 MPa 2 ot i A : Veonc 7 24 KN/m? (2 Mudes 7 PH Wy = 1-209 + We (Ho) ’ fy 7 295 mPa | | Wu > 19. j04 EN/M. (Factored, joad ) Main Par P > [2mm + Muges + (h073kN-m Al c i : ) Temp: Bar D = jomm tod c Mu des [A x10% as DP baz . 0-9(1000) (19)? r ‘ea pat temp bat hey ge 2.30RU mn fag 0 4 [+ [sR | 2) | 2 sonelae][r-fr- 28] , ; ] freq * 0:00903903@ (Cl bt 20 [0-4 + bo ee, 295 pri! 7 =. 0:004@S937 __ 21900 [240+ 300 AY EAD : =\—goT hoy alt ’ 140 |. b-00s0909_—* We t= 10 OF mm gay 1O5me fy + 4 fel | minimum design max * S| oes ; P| thickness (vys) | 8 of clab te [ oes S (09s) | d= j08 -20- _— diz yolem fax * 0°023645 ) b= 1000mm ins = fina; ) p * 0-85 erin pnt? fr " "P= Freq * 0-007 [C) Main Par: A 2 ba | a __ Ale AS (reg | + Atregd = B10) (79) be Zz ) AS = G03 53mm” 5 > ——#— (i008) fe) AL min * 0:002 bt | 6 = 1B. 3920560 mm = 0-002 (1000))(105 ) AGmin 7 210 men 7 i i vay UF (8S am i( bund dobn, by 5) code! SZ BbHo} 1385 4 Aregd 2 'ASmin| Wy iy / td Sz 450 4so ' ro mG Use jamn B main Car Spaced tesmer 0.C) i poy rey 4g [ Temperatufe: BAM fs { fY < 420MPA 5 Anin = 0-0%ot > Svemp | _Ale | Py Atemp AS temp: > o.002bh kl de | nto)? | 0-002 ((000) (105) f Stemp = — Es (1000) Aiemp = 210 mn? | 210° i I | Stemp > 374m! gay Syemp = 37tOmm | | . [kab | fal Code Sxemp 450 so sie a S vem Se es oy \w ob ‘bo bhot tate cec 1 papers =.» [FS USE [1omm B Temp- Bar] Wace GBH Design / Derails # T , 1200mM, + e ] ~ : weet | 2 3990 | be | 4 ; Ly jonim temperature TON zomm | A: bar spaced @. + fe eb 370mm |0-C. iy | ‘| \- i aL roy [2mm p je parr = i | } spaced @ lasmm) OC. vedoul ia s D D DD) rd ID SHEAR IN BEAMS = ( STIRRUPS > Vn *?Vo + VS Yp > Nominal Shear capacity Vo 2 Shear capacity oF the concrete waar Stiefups Tre peam section | ive? Pa. Ve + Shear capacity oF the ctiups | vu = Ultimate entar Copaciby | [vue 7045 _| 7 | | Suen Av fyd AV = Area jn Snear | vs (too leg! oF sctimaps) —- - default Dervatio + oe {Po 2) Orgy WUges = Vucap A | Pa ¥s) + P(ve t¥) | +) Als ET aisvegara | _ Nudes iy, vd | Ys (actual) gpg % ji Wen Vic edt . 1 5Y Aas | | Zz BYC = Stirrups are needed. { 2 Ae vi vu 4 Be (0- 5) Stiups are not | needed! | $°3.s PS Tey KI | Ls Shear Crack __ Earthquake Load i = Cole: a | LA | ai @ a distance | 2d From the T we | pace OF cuppor’ d | fafa I: | | & 896 \ i 2 | 24.Yeneeves @ vetigh, aways) 1|@ Pomm start! 3 Us¢0mm code * Vue > -2D4 LoL t LOE or 0.5E vs 7B Yfe A Vs 4 Hy fe ba vs > $fe- wel : 2 4 go a (a) increase Ne beam Sregd = Z Syegd <= a SECTION (b) increase concrete Sreqd & GOOmm Sreqd = sadmm sirength (c) combination oF Cal) F (ep) PROBLEM 1. Determine the theoretical | | spacivg oF (omm | straps), FY 2 27SMPa he “ge > 24mPA . For ‘a 3m can firever beam jared as spon’. ie aku ye Po » |OkN 4 ae We, = @kN/m } Pi? BEN PET ryy yy yyy 325 | Festa S|" jb tads dp a pj L | Lt 4 wuz b2(L4) 7 $O(@) = 20-4 N/m) Py= $2(10) + 1@(B) = 24.8KN H @a-q Ru = 26 4(9)+ 24.8 ary = Ru = 104 kN 1 ; Ru- 5 4(0-325) + Yue 70 1 { _| Vue > 104 - 20- 4(0-325) | | HOH) Yug, | okt “Vue = 98-42 KN | eS a 0 Piet tt || sheer Diagram | | cr P(vetvs) | | lip required cpecitg oF tiers Is headed * Wc hy _ Vee i | L Vs = + ~ Ve ++¥e—= te bd z 4, [aa (225)(250) x10 3 | skewed? | Ja (250)(325) x10"? Ch me Vs =: wp 29 Al AV {yd Stnieo = apy uw Reta (235)(328) x10” Ay, [Fines = 230-58mm | l Fife od 60-89 < 13268 j | df2 = 3285/2 7 (oz-Simm 84 = econ [ea aR vr aeign PIJIISAALISILELEE CCC PROBLEM 3- Same W/ Proplem 2 , but w/ an additional earthquake load: LLELUGGGUGGN op) kN Jn Wu = 50) ( oy een O rr e mt eS | ww 7 (Ruz 23-32 KN [A tT pow | | j ia | || 283% Wie des = Wao.» + Wee) We. | | i > 191.25 4 29-99 oO T } We des 7 154.5, KN [Bl Wied _ | | (+ governs ) _ We des TF aa Mein Ee = ee ke av syd eC) : : Sineo = —Ve - 2T (amy say xi? ante] (295)(378) "64S Give fs | en | 7 ha Wey won't govern ~ xo? | vg = 135-02 EN Wey, =15D- 50075) Stheg = V72Fomm | Vugy 7 1125 EN —y from Spear diagram oF proot2 © 2A @ code veel | @ distance 2A + 70mm! ve $$ fe ba | | Ay = 37°/4 = 99.45 —¥ USE | | tafest | | i {35 < 312.794mm section ic okay! Va < 156: 296mm | 2 7 Ve £ 5 (OF (239)( 378) x10"? | | 300mm i dj: = 295 /2 = 1873 : 450-50 ; : Whe 2 798 x 8 Sregd Zap mm | | Qo | I pes % lao (238375) x10" i | BBme | = 0 L 24D or = R412) = 288m | | ‘ | | USE (99 7Smm , ay 90mm Use | 2mm straps) 1@ somm , B@ Oomm, rest @lesnm oC. From the Face op Support to midspan beam PPPPP PPP OP eeeee NS Y—IEE'S OE DOUBLY). REINFORCED .BEAM (ORB) a PPPS oss eeeeeeseuyyeEyE > 4 >» _ a © le7, al | Cl orc, ai C's or C2 AS _ Dte-a = % . + rd 4 AS Aisa. Pee ea Bp Ary SAY Asi Fy Asa ey, a an b ; } mu = mu, % Notes : ] | f r ae = Mur + Mug ie r+ 4 Mun= B Aca sy (a-a') | - AcE (Od me MUL G0. 8S¢cab (a7) Ci = 0-895 ab | rf fis C2 = ANSE) onAsss | i Th > AS FY | Tes AG gy $b — TENSILE STEEL Aways “vieLo! bid egy deep 32 i 1 uaedbsk eT tC, +6g —» er | equation | C2 =T2 bof | | ici) > Th | + mucap > ¢ [> ete 20 (a) Rep late | comcrete + Mucap = B[ awry (d- 45) ’ ning (2a) | see Cention) Ni AG FY a +a a at So? oes OB, El pace i Lat 4, | bg. rade att + gs + elena he peer ' Hee 5.00% (ed 3 — 2x10F | 4 s Filio | 3 pl\ { i § 2 gente | d | ! | =e Ne Phat mAb Gb ig , Tr BS, Feb 7 I Acfy = p.B5fe (cpio + +s [emcee Ly Ags (cel comps does not yield’) bei fbi key roe }