Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Rangkaian Orde Dua - Step Response Rangkaian RLC, Lecture notes of Electrical Circuit Analysis

Rangkaian Orde Dua - Step Response Rangkaian RLC

Typology: Lecture notes

2018/2019

Available from 01/12/2023

TommyBasril
TommyBasril 🇮🇩

9 documents

1 / 10

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
STEP RESPONSE RANGKAIAN RLC
SERI DAN PARALEL Pengantar Analisis
Rangkaian
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Rangkaian Orde Dua - Step Response Rangkaian RLC and more Lecture notes Electrical Circuit Analysis in PDF only on Docsity!

STEP RESPONSE RANGKAIAN RLC

SERI DAN PARALEL

Pengantar Analisis Rangkaian

TUJUAN PEMBELAJARAN

Memahami Respon Step pada Rangkaian RLC Seri dan Paralel

Persamaan diferensial tegangan kapasitor pada rangkaian

STEP RESPONSE RANGKAIAN RLC SERI

LC

V

LC

v dt

dv L

R

dt

d vC (^) + + = s 2

2

v( t ) = vt (t)+vss(t)

STEP RESPONSE RANGKAIAN RLC SERI

vt (t ) = Aes^1 t + Bes^2 t

vt (t ) = e^ t( Acos( ot) + B sin(  o t))

vt (t) = ( At + B)e^ st

STEP RESPONSE RANGKAIAN RLC PARALEL

Perhatikan rangkaian RLC Paralel berikut KCL pada rangkaian untuk t > 0 :

Sehingga

Akhirnya diperoleh persamaan diferensial LC

I

LC

i dt

di dt RC

d i + 1 + = s 2

2

dt^ IS

i C dv R

v (^) + + =

dt

v =LdiL

IS

dt

i CLd i dt

di R

L

dt

i C dv R

v (^) + + = + + = 2

2

Persamaan diferensial arus induktor pada rangkaian

STEP RESPONSE RANGKAIAN RLC PARALEL

i( t ) =it (t)+iss(t)

LC

I

LC

i dt

di dt RC

d i + 1 + = s 2

2

Solusi Lengkap (Complete Solution) :

▪ Overdamped :

▪ Critically damped :

▪ Underdamped :

STEP RESPONSE RANGKAIAN RLC PARALEL

i (t ) = Is + Aes^1 t + Bes^2 t

i (t ) = Is +e^ t( Acos( (^) ot) + B sin(  (^) o t))

i (t) = Is +( At + B)e^ st