Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

POLYNOMIAL EXAM QUESTIONS, Exercises of Algebra

d) Express ( ). f x as the product of two linear factors and a quadratic factor. e) Show that the equation ( ) 0. f x = has exactly two solutions. SYN- ...

Typology: Exercises

2021/2022

Uploaded on 08/05/2022

hal_s95
hal_s95 ๐Ÿ‡ต๐Ÿ‡ญ

4.4

(652)

10K documents

1 / 55

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Created by T. Madas
Created by T. Madas
POLYNOMIAL
EXAM
QUESTIONS
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37

Partial preview of the text

Download POLYNOMIAL EXAM QUESTIONS and more Exercises Algebra in PDF only on Docsity!

POLYNOMIAL

EXAM

QUESTIONS

Question 1 ()** Multiply out and simplify

( 2 x^^2 โˆ’^ x^ โˆ’^3 )^ ( 1 +^2 x^ โˆ’^ x^2 ),

writing the answer in ascending powers of x.

โˆ’ 3 โˆ’ 7 x + 3 x^2^ + 5 x^3 โˆ’ 2 x^4

Question 2 ()**

f ( x ) โ‰ก x^3^ โˆ’ 3 x^2 + 6 x โˆ’ 40.

a) Show that ( x โˆ’ 5 )is not a factor of f ( x ).

b) Find a linear factor of f ( x ).

MP1-N , ( x โˆ’4)

Question 5 ()**

a) Use the factor theorem to show that ( x + 3 )is a factor of x^3 + 5 x^2 โˆ’ 2 x โˆ’ 24.

b) Factorize x^3 + 5 x^2 โˆ’ 2 x โˆ’ 24 fully.

( x^ +^3 )(^ x^ โˆ’^2 )(^ x +^4 )

Question 6 (+)** Find the coefficient of x^3 in the expansion of

( 2 x^3^^ โˆ’^5 x^2^^ +^2 x^ โˆ’^1 )^ ( 3 x^3^^ +^2 x^^2 โˆ’^9 x +^7 ).

... + 60 x^3 ...

Question 7 (+)** Multiply out and simplify

(^1 +^ x^ )(^1 +^ x^^2 )(^1 โˆ’^ x^ +^ x^2 ),

writing the answer in ascending powers of x.

1 + x^2 + x^3^ + x^5

Question 8 (+)**

a) Use the factor theorem to show that ( x โˆ’ 5 )is a factor of x^3 โˆ’ 19 x โˆ’ 30.

b) Factorize x^3 โˆ’ 19 x โˆ’ 30 into three linear factors.

( x^ +^3 )(^ x^ +^2 )( x โˆ’^5 )

Question 11 (+)**

f ( x ) โ‰ก x^3 โˆ’ 2 x^2 + kx + 6 ,

where k is a constant.

a) Given that ( x โˆ’ 3 )is a factor of f ( x ), show that k = โˆ’ 5.

b) Factorize f ( x )into three linear factors.

c) Find the remainder when f ( x )is divided by ( x + 3 ).

C2F , ( x โˆ’ 1 )( x + 2 )( x โˆ’ 3 ), R = โˆ’ 24

Question 12 (+)**

a) Use the factor theorem to show that ( x + 2 )is a factor of 2 x^3 + 3 x^2 โˆ’ 5 x โˆ’ 6.

b) Factorize 2 x^3 + 3 x^2 โˆ’ 5 x โˆ’ 6 into three linear factors.

( x^ +^1 )(^ x^ +^2 )( 2 x โˆ’^3 )

Question 13 (+)**

f ( x ) โ‰ก 2 x^3^ โˆ’ 7 x^2 โˆ’ 5 x + 4

a) Find the remainder when f ( x )is divided by ( x + 2 ).

b) Use the factor theorem to show that ( x โˆ’ 4 )is a factor of f ( x ).

c) Factorize f ( x )completely.

C2I , R = โˆ’ 30 , ( 2 x โˆ’ 1 )( x + 1 )( x โˆ’ 4 )

Question 15 (+)**

f ( x ) โ‰ก px^3^ โˆ’ 32 x^2 โˆ’ 10 x + q ,

where p and q are constants.

When f ( x )is divided by ( x โˆ’ 2 )the remainder is exactly the same as when f ( x )is

divided by ( 2 x + 3 ).

Show clearly that p = 8. C2J , proof

Question 16 ()* Solve the equation

x^3^ + x^2 โˆ’ ( x โˆ’ 1 )( x โˆ’ 2 )( x โˆ’ 3 ) = 12.

x = โˆ’^37 , 2

Question 17 ()*

f ( x ) โ‰ก 3 x^3 โˆ’ 2 x^2 โˆ’ 12 x + 8.

a) Find the remainder when f ( x )is divided by ( x โˆ’ 4 ).

b) Given that ( x โˆ’ 2 )is a factor of f ( x )solve the equation f ( x ) = 0.

C2C , R = 120 , x = โˆ’2, 23 , 2

Question 19 ()*

f ( x ) โ‰ก 6 x^2 + x + 7 , x โˆˆ .

The remainder when f ( x )is divided by ( x โˆ’ a ) is the same as that when f ( x ) is

divided by ( x + 2 a ), where a is a non zero constant.

Find the value of a.

C2N , a =^16

Question 20 ()* A cubic function is defined in terms of the positive constant k as

f ( x ) โ‰ก x^3 + ( k โˆ’ 1 ) x^2^ โˆ’ k^3 , x โˆˆ .

It is further given that when f ( x )is divided by ( x โˆ’ 3 )the remainder is 18.

a) Determine the value of k.

b) Find the remainder when f ( x )is divided by ( 2 x โˆ’ 5 ).

k = 3 , (^98)

Question 21 ()* A cubic graph is defined as

f ( x ) โ‰ก x^3^ + x^2 โˆ’ 10 x + 8 , x โˆˆ .

a) By considering the integer factors of 8 , or otherwise, express f ( x ) as the

product of three linear factors.

b) Sketch the graph of f ( x ).

The sketch must include the coordinates of any points where the graph of f ( x )

meets the coordinate axes.

MP1-K , f ( x ) = ( x โˆ’ 2 )( x โˆ’ 1 )( x + 4 )

Question 23 ()*

f ( x ) โ‰ก x^3^ + px^2 + qx + 6

a) Find the value of each of the constants p and q , given that โ€ฆ

โ€ฆ ( x โˆ’ 1 )is a factor of f ( x )

โ€ฆ when f ( x )is divided by ( x + 1 ) the remainder is 8.

b) Hence solve the equation f ( x ) = 0.

C2H , p = โˆ’ 2 , q = โˆ’ 5 , x = 1, โˆ’2, 3

Question 24 ()*

f ( x ) โ‰ก 2 x^3^ โˆ’ 7 x^2 โˆ’ 2 x + 1

a) Use the factor theorem to show that ( 2 x + 1 )is a factor of f ( x ).

b) Find the exact solutions of the equation f ( x ) = 0.

x = โˆ’ 12 , 2 ยฑ 3

Question 25 () a)* Find the value of each of the constants a , b and c so that

6 x^3 โˆ’ 7 x^2 โˆ’ x + 2 โ‰ก ( x โˆ’ 1 )( ax^2 + bx + c ).

b) Hence solve the equation 6 x^3 โˆ’ 7 x^2 โˆ’ x + 2 = 0. C2M , a = 6, b = โˆ’1, c = โˆ’ 2 , x = โˆ’^1 2 3^ , 2 ,

Question 27 ()*

f ( x ) โ‰ก x^3 โˆ’ 9 x^2 + 22 x โˆ’ 12.

a) Show that x = 3 is a solution of the equation of the equation f ( x ) = 0.

b) Find, in exact surd form, the other two solutions of the equation f ( x ) = 0.

x = 3 ยฑ 5

Question 28 ()*

f ( x ) โ‰ก x^2 โˆ’ 4 x + 12.

The remainder when f ( x )is divided by ( x + k )is three times as large as when f ( x )is

divided by ( x โˆ’ k ).

Determine the possible values of k. C2P , k =6, 2

Question 29 ()*

f ( x ) โ‰ก 2 x^3^ + kx^2 โˆ’ x โˆ’ 6 ,

where k is a constant

Given that f ( 3 ) = 0 , โ€ฆ

a) โ€ฆ show that k = โˆ’ 5

b) โ€ฆ factorize f ( x )as a product of one linear and one quadratic factor.

c) โ€ฆ show further that, apart from x = 3 , the equation f ( x ) = 0 has no other real

f solutions. f (^) ( x (^) ) = (^) ( x โˆ’ (^3) ) (^) ( 2 x^2 + x + (^2) )