Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Partial differentiation (part-A), Summaries of Mathematics

These notes are for engineering mathematics, for the topic partial differentiation.

Typology: Summaries

2023/2024

Available from 07/08/2025

tushar-mawale
tushar-mawale 🇮🇳

1 document

1 / 26

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a

Partial preview of the text

Download Partial differentiation (part-A) and more Summaries Mathematics in PDF only on Docsity!

Ub -; Feertial it-fere renotion. ; Single Vai alle Several Vartable - Ti Ti ae Ut po ted fOoy) © L # e@) ° £@) i 2a Kye $ Guy) ~ £ (ab) we a 2 ots, Y 2 lini and Contfnutety of functions af to variables Lintits 3 efinttion: ene G0y= ond We veod. ti (muy) > Cab) j toi of Puy) as (a, 4). approches (arb) fs by i we wart fob,’ we can make f(x,y) as close 5 1) Mud simply by Teer, Guy) close onaugyy Je (a not equal to it- Remarks ; 4 ; y h a is ‘is an 4o note hat when computing. It 4, y) = = (x14) > Cay b) “a rs ever equal ope Tn Fact, the Puriction Bi ke cteBne! a Gayo) et “™ Hitt may i exisl. While (a/b) ramp not be ‘in domain of f the points (%y) me We consider as (%y) (a)b) ae ‘ae . ‘in domain £ Ike fle yYan-y yoo L>2 2% -YoY co sationlize tea’ “comes =O? . saa Se ce a (a> (20) ax-y-+ ? alti eo ar —0)- 4 " t Lf Vot-2 , we a ar-Y ee £ SOK Ay ts (er) J ° 48 ston oh@ ) beh See : Paes WS> 83 Va 4 = —, eT (Ea \pos Te }> te 0 7l2- Ve Vy m~>0 gy L370 "OW a rea Ler} =Oy aia He Septbiar of I ay ‘o => (0,0) vy se ah rac ai - 4b 7 ae ate \s of ee “ory Fa Sh oo a een ee | continous af (e,0) 9 tt | Ik Coyy+ acovy*-0420y)} yd 120 > es [ 0 +0-0+2y] ES Yi [o 40-0 42003]. ° = cc) along yo IE [ LE # (ger) + 91° % +20) ame A>O Yor tt [ x’m + amint_1+9m] ae 120 Lo “pope hr Joe [co)’m o 3¢en') (0-0, +27C3) , dence £69) 0 = ee pe Livi) en $(any) fs Cortinous « ‘ my okey ae = ug We Hlowtng functio,,. i rae Hig continuity for q at Z gmuy origin . } e o ‘ cS ee ee ) £ (my) - aye Bs ghee Ee pe uy) = (29) ’ ee, te at - lt my) yoo : gv) 207G) E yl — 4 y+ aoe ” " GN sr mer || ae 200)] L 0 +0" lt [att 20oYy iy \eysod [a Yee hoa ory ! along Yam =0 eva ze) : ly 4 \ olr along ye mae chain sule : 3 Af *wais a -functton, of Mey rand ye Me ‘fal urselves functions of 4 te. Hf zisa composite cBve % P won ohn 4then Whe cevivalive of # with an ne 7 48 ven chain ule - ro | vespect ¢ ae RCW i) : du . au du yd du , Az Refit, at Bide + Beal #5 SE at PAs ot 2 1S a funchon of %Y--and wy thumse Ives a as Be otros OF t te iP =m Sees compo si le Lee of t Pun the devvattve of &@ with meegert te & dz. dt. da 4232. gy Ob ou ab Ex Al: nit 2 _ of 2 isa -fuction of o ayy and nuy thennselves axe. fe -tunchons of uv ve. 2 is a compostle function «| F uv then the partial clefivattives of Ee oh, nrespect a u and v are b given wae 02 . Gee Ge fr 22, dz ax, B2 ay -E dx yd dy ou | Ae ie ay Ae ae he ox vy ae & if wis a Auction of ayy, % and aye themselves ave the functions of U,v te., if wis a composite function of UV then te paréal ‘derivatives of 2 pith respect to wand V are quer by: Qw - QW au dw 24, dw az ie de OU “Oy OY 4 Be er ux cos (VexHVY), Frove that x x» Hf ' cf on age a + ty if = A cf Wee oe a Fy leb y= ati f r ur cos (¥X4+VE ) ae eg A ats Sy Gos (verve) = on Wa 4VE) (59°) = -4_(6in va 4VE)) ave , a ee ae = mo > vere wit to y ) tet ses AS nf) ary avy ) sin) + on GHW _ wey) Y a 42 ee, YE - yt)