Partial preview of the text
Download Mock exam for Higher Order Ordinary Linear Differential Equation (MUC and MVP) and more Exams Engineering Mathematics in PDF only on Docsity!
MUC without yp duplication y+ 2y’ + Sy = e* sinx Solution: Solving for yc Aux Eqn: m+2m+5=0 m?+2m+1=-4 (m+ 1)? =-4 m=-1+2i Ve = e-*(C, cos 2x + Cz sin 2x) Ve = Cye™* cos 2x + Czpe™* sin 2x Solving for yp f(x) = e* sinx Transformation for yp Vp = (Ae*)(B cos x + Csin x) Vp = ABe* cosx + ACe* sinx Yp = Me*cosx + Ne*sinx M=AB & N=AC Vp = Me* cosx — Me* sinx + Ne* sinx + Ne* cosx Yn = (M + N)e* cosx + (N — M)e*sinx Yp = (M + N)e* cosx — (M + N)e*sinx + (N — M)e* sinx + (N — M)e* cosx Yp = 2Ne* cosx — 2Me* sinx Vp t+ 2Ypy + S¥py = e* sinx (2Ne* cosx — 2Me* sinx) + 2[(M + N)e* cosx + (N — M)e* sin x] + 5(Me* cos x + Ne* sinx) = e* sinx (2N + 2M + 2N + 5M)e* cosx + (—2M + 2N — 2M + SN)e* sinx = e* sinx (AN + 7M)e* cosx + (7N — 4M)e* sinx = e* sinx 7 e* cosx: 4N+7M=0 > N=- 7M 7 e* sinx: 7N-4M=1 + 7(-1M)-4M=1 5 y — 4 4 M=—os 7 N=e 4 oxcosy seers =—-—e cosx+—e* sinx ye 65 65 Solving for y 7 V=Vet+Vp = Cye* cos 2x + C,e* sin 2x raid cosx+ ose sinx Find v's: 1 cosx sinx 0 —sinx cosx 0 -cosx —sinx. |A| = (sin? x) + cos? x =1 Solve 0 cos x sinx 0 —sinx cosx tanx+3 . ———_ -cosx —sinx 2: tanx +3 tanx +3 tanx +3 |Ay| = E>) (cos # x) — E>) (- sin? x) = >) (cos? x + sin? x) _tanx+3 2 tanx +3 yd _ tanx+3 Al 1 _ tanx+3 | tanx | Sax — Insecx | 3 my = | —z— dx= tox 1 0 sinx 0 0 cos x tanx +3 . 2 sin x sl (mats) ) —cosxtanx—3cosx —sinx—3cosx = —cosx) = = 2 2 eos 2 2 —sinx — 3cosx . ,_ a2] 72 __ ~sinx—3cosx 72 = Tal 1 = 2 _ ee -(> [=e — 08% | —3.sin# Kan 2 2 2g 2 1 cosx 0 0 —-sinx 0 tanx +3 0 -cosx ——>— 2 —sin? x tanx +3 . —sinxtanx—3sinx —Gogqx_ 7 3sinx _ asin? x 3sinx —(1—cos? x) 3sinx ~ 2cosx 20 2cosx 2 _ ot cos?x 3sinx ~ 2cosx | 2cosx 2 —secx cosx 3sinx a ar a) =secx , cosx 3sinx ot = Bal 8 2 7 2 ——seex | cosx’ 3sinx 3 Al 1 2 2 2 _ —— sen) a -(—Sa + COSH +f 3sinx | 3 = 2 2 ae eee ew z z _ —In|tanx + secx| LA Rd 7 2 2 2 ]Solution for yp using MVP: Yp = V1 + v2 cosx + v3 sinx (asx 3 ) + (ee See = sx 2 2 2 2 (lene seca sinx | 3cosx 2 2 2 Insecx 3 1 2 a) sinxIn|tanx + secx +5xt75 (cos x + sin’ a a ae) Insecx 3 1 sinxIn|tanx + secx| wg t9%t2 2 ) cos x ) sinx Complete Solution: Insecx 3 1 sinx In| tanx + secx | 2 12**2 2 y=C,+C,cosx+C3sinx+ Engr. Rodrigo L. Cardiz connected a resistor (R = 3 @), inductor (L = ; H),and capacitor (€ = 0.08 F) in series to an applied voltage E = 10 V. Assuming no initial current and charge when the voltage is first applied, find the subsequent charge (g) in the circuit. E=10v F Tle) = glo) =o