



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
This document contains Notes and formulas of Laplace Transform.
Typology: Summaries
1 / 7
This page cannot be seen from the preview
Don't miss anything!
1.1 Introduction
The Laplace Transform is a very versatile mathematical tool which enables the
scientists and engineers to find out the solution of the initial value problems
involving homogeneous and non-homogeneous equations alike. Before the
advent of calculators and computers, the logarithms were extensively used to
replace multiplications or division of two large numbers by addition or
subtraction of two numbers. The crucial idea behind the Laplace Transform is
that it replaces operations of calculus by operations of algebra.
1.2 Definition of Laplace Transform:
Let us consider a function ๐(๐ก) which is defined for all the positive values of ๐ก.
Then the Laplace transform of the function ๐(๐ก) is defined as
โ๐ ๐ก
โ
0
provided that the integral exists. Here ๐ is a parameter which may be real or
complex. Here ๐
is called the Laplace Transform of ๐(๐ก). The function ๐(๐ก),
on the other hand, is called the inverse Laplace Transform of ๐
(๐ ). It is
symbolically denoted as ๐ฟ
โ 1
}. The symbol L transforming ๐(๐ก) into ๐
is
termed as the Laplace transform operator.
1.3 Laplace Transform of Some Elementary Functions:
(i) Let ๐
= 1 , then
โ๐ ๐ก
โ
0
โ๐ ๐ก
โ
0
โ๐ ๐ก
(ii) Let ๐
๐๐ก
, then
๐๐ก
โ๐ ๐ก
โ
0
๐๐ก
โ(๐ โ๐)๐ก
โ
0
โ(๐ โ๐)๐ก
Let ๐ โ โ๐, then
โ๐๐ก
(iii) Let ๐(๐ก) = sin ๐๐ก, then
๐ฟ{๐(๐ก)} = ๐ฟ{sin ๐๐ก} = โซ ๐
โ๐ ๐ก
โ
0
sin ๐๐ก ๐๐ก
โ๐ ๐ก
2
2
(โ๐ sin ๐๐ก โ ๐ cos ๐๐ก)}
2
2
(iv) Let ๐(๐ก) = cos ๐๐ก, then
cos ๐๐ก
โ๐ ๐ก
โ
0
cos ๐๐ก ๐๐ก
โ๐ ๐ก
2
2
โ๐ cos ๐๐ก + ๐ sin ๐๐ก
2
2
Let ๐ โ 1 , then
๐ฟ{cos ๐ก} =
2
(v) Let ๐(๐ก) = sinh ๐๐ก, then
๐ฟ{๐(๐ก)} = ๐ฟ{sin โ ๐๐ก} = ๐ฟ {
๐๐ก
โ๐๐ก
๐๐ก
โ๐๐ก
[By Linearity Property]
2
2
Let ๐ โ 1 , then
๐ฟ{sinh ๐ก} =
2
โ๐๐ก
๐๐
sin ๐๐ก
2
2
2
cos ๐๐ก
2
2
2
sin โ ๐๐ก
2
2
2
2
๐
๐+ 1
2
2
3
๐
4
Example 1.1: Find the Laplace transforms of (i) ๐ฌ๐ข๐ง ๐๐ ๐๐จ๐ฌ ๐๐ (ii) ๐ฌ๐ข๐ง
๐
(iii) ๐๐จ๐ฌ ๐
๐
๐๐ (iv) ( โ
๐
โ๐
๐
(v) ๐ฌ๐ข๐ง ๐
๐
๐๐ (vi) ๐ฌ๐ข๐ง ๐
๐
(vii) ๐๐จ๐ฌ ๐ ๐๐จ๐ฌ ๐๐ ๐๐จ๐ฌ ๐๐.
Solution: (i) Let ๐(๐ก) = sin 2 ๐ก cos 3 ๐ก
2 sin 2 ๐ก cos 3 ๐ก
{sin 5 ๐ก + sin(โ๐ก)}
{sin 5 ๐ก โ sin ๐ก}
โด ๐ฟ{๐(๐ก)} = ๐ฟ{sin 2 ๐ก cos 3 ๐ก}
{sin 5 ๐ก โ sin ๐ก}]
[๐ฟ{sin 5 ๐ก} โ ๐ฟ{sin ๐ก}]
2
๐
(ii) Let ๐
= sin
3
1
4
4 sin
3
[ 3 sin 2 ๐ก โ sin 6 ๐ก] [โต sin 3 ๐ก = 3 sin ๐ก โ 4 sin
3
sin 2 ๐ก โ
sin 6 ๐ก
โด ๐ฟ{๐(๐ก)} = ๐ฟ{sin
3
๐ฟ{sin 2 ๐ก} โ
๐ฟ{sin 6 ๐ก}
2
2
2
2
(iii) Let ๐
= cosh
3
1
4
4 cosh
3
cosh 6 ๐ก + 3 cosh 2 ๐ก
cosh 6 ๐ก +
cosh 2 ๐ก
cosh
3
cosh 6 ๐ก
cosh 2 ๐ก
2
2
(iv) Let ๐(๐ก) = ( โ
1
โ๐ก
3
1
2
โ
1
2
)
3
3
2
โ
3
2
1
2
โ
1
2
3
3
2
} + ๐ฟ {๐ก
โ
3
2
} + 3 ๐ฟ {๐ก
1
2
} + 3 ๐ฟ {๐ก
โ
1
2
}
(vii) Let ๐
= cos ๐ก cos 2 ๐ก cos 3 ๐ก =
1
2
2 cos ๐ก cos 2 ๐ก
cos 3 ๐ก
{cos(๐ก + 2 ๐ก) + cos(๐ก โ 2 ๐ก)} cos 3 ๐ก
{cos
2
3 ๐ก + cos ๐ก cos 3 ๐ก}
2 cos
2
2 cos ๐ก cos 3 ๐ก
1 + cos 6 ๐ก + cos 4 ๐ก + cos 2 ๐ก
cos 6 ๐ก +
cos 4 ๐ก +
cos 2 ๐ก
โด ๐ฟ{๐(๐ก)} = ๐ฟ{cos ๐ก cos 2 ๐ก cos 3 ๐ก} = ๐ฟ {
1
4
1
4
cos 6 ๐ก +
1
4
cos 4 ๐ก +
1
4
cos 2 ๐ก}
cos 6 ๐ก
cos 4 ๐ก
cos 2 ๐ก
2
2
2