Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Laplace Transform: Existence and Properties, Summaries of Applied Mathematics

The existence and properties of Laplace transforms. It explains the conditions for the existence of Laplace transforms and provides a theorem and proof for the same. It also discusses the first translation property and provides an example to find Laplace transforms of different functions. relevant for students studying mathematics, engineering, and physics.

Typology: Summaries

2020/2021

Available from 01/19/2022

sid_ortal
sid_ortal ๐Ÿ‡ฎ๐Ÿ‡ณ

3 documents

1 / 10

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Notes-II
Unit-I LAPLACE TRANSFORM
1.4: Existence of Laplace Transforms
The Laplace transform of any function ๐‘“(๐‘ก) will exist if the integral in Section
(1.1) is convergent. For the purpose, the whole integrand ๐‘’โˆ’๐‘ ๐‘ก๐‘“(๐‘ก) goes to zero
fast enough as ๐‘กโ†’โˆž, at least like an exponential function with a negative
exponent. This implies that ๐‘“(๐‘ก) itself should not grow faster than, ๐‘’๐‘˜๐‘ก(๐‘ ๐‘Ž๐‘ฆ).
This motivates the inequality (1.2) given in the following theorem:
Theorem 1.1: Let ๐‘“(๐‘ก) be a function that is piecewise continuous on every finite
interval in the range ๐‘กโ‰ฅ0 and satisfies
|๐‘“(๐‘ก)|โ‰ฆ ๐‘€ ๐‘’๐‘˜๐‘ก
for all ๐‘ก โ‰ง0, โ€ฆ โ€ฆโ€ฆ โ€ฆโ€ฆ โ€ฆโ€ฆ โ€ฆโ€ฆ โ€ฆ(1.2)
and for some constants ๐‘˜ and ๐‘€. Then the Laplace transform of ๐‘“(๐‘ก) exists
for all ๐‘ >๐‘˜.
Proof: Since ๐‘“(๐‘ก) is continuous, the integrand ๐‘’โˆ’๐‘ ๐‘ก๐‘“(๐‘ก) is integrable over any
finite interval on the t-axis.
From (1.2), assuming that ๐‘ >๐‘˜, we obtain
|๐ฟ{๐‘“(๐‘ก)}|=|โˆซ ๐‘’โˆ’๐‘ ๐‘ก
โˆž
0๐‘“(๐‘ก)๐‘‘๐‘ก|โ‰ฆโˆซ |๐‘“(๐‘ก)|
โˆž
0๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก
โ‰ฆโˆซ ๐‘€
โˆž
0๐‘’๐‘˜๐‘ก ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก=๐‘€
๐‘ โˆ’๐‘˜ ,
where the condition ๐‘ >๐‘˜ was needed for the existence of the last integral.
This completes the proof of the theorem.
1.5: Properties of Laplace Transform
1.5.1: First Translation Property or First Shifting Property
Statement: If ๐ฟ{๐‘“(๐‘ก)}=๐‘“๎ชง(๐‘ ), then ๐ฟ{๐‘’โˆ’๐‘Ž๐‘ก๐‘“(๐‘ก)}=๐‘“๎ชง(๐‘ +๐‘Ž).
Proof: ๐ฟ{๐‘’โˆ’๐‘Ž๐‘ก๐‘“(๐‘ก)}=โˆซ๐‘’โˆ’๐‘ ๐‘ก
โˆž
0{๐‘’โˆ’๐‘Ž๐‘ก๐‘“(๐‘ก)}๐‘‘๐‘ก
=โˆซ ๐‘’โˆ’(๐‘ +๐‘Ž)
โˆž
0๐‘“(๐‘ก)๐‘‘๐‘ก
=๐‘“๎ชง(๐‘ +๐‘Ž)
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Laplace Transform: Existence and Properties and more Summaries Applied Mathematics in PDF only on Docsity!

Notes-II

Unit-I LAPLACE TRANSFORM

1.4: Existence of Laplace Transforms

The Laplace transform of any function ๐‘“(๐‘ก) will exist if the integral in Section

(1.1) is convergent. For the purpose, the whole integrand ๐‘’

โˆ’๐‘ ๐‘ก

๐‘“(๐‘ก) goes to zero

fast enough as ๐‘ก โ†’ โˆž, at least like an exponential function with a negative

exponent. This implies that ๐‘“(๐‘ก) itself should not grow faster than, ๐‘’

๐‘˜๐‘ก

This motivates the inequality (1.2) given in the following theorem:

Theorem 1.1: Let ๐‘“(๐‘ก) be a function that is piecewise continuous on every finite

interval in the range ๐‘ก โ‰ฅ 0 and satisfies

๐‘˜๐‘ก

for all ๐‘ก โ‰ง 0 , โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ ( 1. 2 )

and for some constants ๐‘˜ and ๐‘€. Then the Laplace transform of ๐‘“(๐‘ก) exists

for all ๐‘  > ๐‘˜.

Proof: Since ๐‘“(๐‘ก) is continuous, the integrand ๐‘’

โˆ’๐‘ ๐‘ก

๐‘“(๐‘ก) is integrable over any

finite interval on the t-axis.

From (1.2), assuming that ๐‘  > ๐‘˜, we obtain

โˆ’๐‘ ๐‘ก

โˆž

0

โˆž

0

โˆ’๐‘ ๐‘ก

โˆž

0

๐‘˜๐‘ก

โˆ’๐‘ ๐‘ก

where the condition ๐‘  > ๐‘˜ was needed for the existence of the last integral.

This completes the proof of the theorem.

1.5: Properties of Laplace Transform

1.5.1: First Translation Property or First Shifting Property

Statement: If ๐ฟ

(๐‘ ), then ๐ฟ

โˆ’๐‘Ž๐‘ก

Proof: ๐ฟ{๐‘’

โˆ’๐‘Ž๐‘ก

โˆ’๐‘ ๐‘ก

โˆž

0

โˆ’๐‘Ž๐‘ก

โˆ’

( ๐‘ +๐‘Ž

)

โˆž

0

Corollary: If ๐ฟ{๐‘“(๐‘ก)} = ๐‘“

(๐‘ ), then ๐ฟ{๐‘’

๐‘Ž๐‘ก

Example 1.2: Find the Laplace Transforms of

(i) (๐Ÿ + ๐’• ๐’†

โˆ’๐’•

๐Ÿ‘

(ii) ๐’†

โˆ’๐Ÿ‘๐’•

(๐œ๐จ๐ฌ ๐Ÿ’๐’• + ๐Ÿ‘ ๐ฌ๐ข๐ง ๐Ÿ’๐’•) (iii) ๐’†

โˆ’๐’•

๐Ÿ

(iv) ๐’†

๐Ÿ๐’•

๐Ÿ’

๐’• (v) ๐’†

โˆ’๐Ÿ๐’•

๐Ÿ‘

Solution: (i) Let ๐‘“(๐‘ก) = ( 1 + ๐‘ก ๐‘’

โˆ’๐‘ก

3

โˆ’ 3 ๐‘ก

3

โˆ’๐‘ก

โˆ’ 2 ๐‘ก

2

โˆ’๐‘ก

3

โˆ’ 3 ๐‘ก

3

โˆ’๐‘ก

โˆ’ 2 ๐‘ก

2

โˆ’ 3 ๐‘ก

3

โˆ’๐‘ก

โˆ’ 2 ๐‘ก

2

4

2

3

4

2

3

(ii) Let ๐‘“

โˆ’ 3 ๐‘ก

cos 4 ๐‘ก + 3 sin 4 ๐‘ก

โˆ’ 3 ๐‘ก

cos 4 ๐‘ก + 3 ๐‘’

โˆ’ 3 ๐‘ก

sin 4 ๐‘ก

โˆ’ 3 ๐‘ก

โˆ’ 3 ๐‘ก

cos 4 ๐‘ก + 3 ๐‘’

โˆ’ 3 ๐‘ก

sin 4 ๐‘ก}

โˆ’ 3 ๐‘ก

cos 4 ๐‘ก

โˆ’ 3 ๐‘ก

sin 4 ๐‘ก}

2

2

2

2

(iii) Let ๐‘“

โˆ’๐‘ก

sin

2

๐‘’

โˆ’๐‘ก

2

1 โˆ’ cos 2 ๐‘ก

[๐‘’

โˆ’๐‘ก

โˆ’๐‘ก

cos 2 ๐‘ก]

โˆ’๐‘Ž๐‘ก

[๐ฟ{๐‘’

โˆ’๐‘ก

โˆ’๐‘ก

cos 2 ๐‘ก}]

[

2

]

(iv) Let ๐‘“

= sin

4

3

8

1

8

cos 4 ๐‘ก โˆ’

1

2

cos 2 ๐‘ก

Proof: ๐ฟ

โˆ’๐‘ ๐‘ก

โˆž

0

โˆ’๐‘ ๐‘ก

๐‘Ž

0

โˆ’๐‘ ๐‘ก

โˆž

๐‘Ž

โˆ’๐‘ ๐‘ก

๐‘Ž

0

โˆ’๐‘ ๐‘ก

โˆž

๐‘Ž

โˆ’๐‘ ๐‘ก

โˆž

๐‘Ž

Let ๐‘ก โˆ’ ๐‘Ž = ๐‘‡, giving ๐‘‘๐‘ก = ๐‘‘๐‘‡

at ๐‘ก = ๐‘Ž, ๐‘‡ = 0 & ๐‘ก = โˆž, ๐‘‡ = โˆž

โˆด From (1), we obtain

โˆ’๐‘ 

( ๐‘Ž+๐‘‡

)

โˆž

0

โˆ’๐‘Ž๐‘ 

โˆ’๐‘ ๐‘‡

โˆž

0

โˆ’๐‘Ž๐‘ 

Example 1.3: (i) Find ๐‘ณ{๐‘ญ(๐’•)} where ๐‘ญ(๐’•) = {

๐…

๐Ÿ‘

๐…

๐Ÿ‘

๐…

๐Ÿ‘

(ii) Find ๐‘ณ{๐‘ญ(๐’•)} where ๐‘ญ(๐’•) = {

๐Ÿ

(iii) Find ๐‘ณ{๐‘ญ(๐’•)} where ๐‘ญ(๐’•) = {

๐’•โˆ’๐’‚

(iv) Find ๐‘ณ

where ๐‘ญ

๐Ÿ๐…

๐Ÿ‘

๐Ÿ๐…

๐Ÿ‘

๐Ÿ๐…

๐Ÿ‘

Solution: (i) Here ๐‘“(๐‘ก โˆ’ ๐‘Ž) = sin (๐‘ก โˆ’

๐œ‹

3

) and ๐‘Ž =

๐œ‹

3

) = sin (๐‘ก โˆ’

= sin ๐‘ก

โˆด ๐ฟ{๐‘“(๐‘ก)} = ๐ฟ{sin ๐‘ก} =

2

Hence ๐ฟ{๐น(๐‘ก)} = ๐‘’

โˆ’๐‘Ž๐‘ 

โˆ’

๐œ‹

3

๐‘ 

2

โˆ’

๐œ‹

3

๐‘ 

2

(ii) Here ๐‘“

2

2

2

2

3

[โˆต ๐ฟ

๐‘›

๐‘›+ 1

]

Hence ๐ฟ{๐น(๐‘ก)} = ๐‘’

โˆ’๐‘Ž๐‘ 

โˆ’( 1 )๐‘ 

3

โˆ’๐‘ 

3

(iii) Here ๐‘“(๐‘ก โˆ’ ๐‘Ž) = ๐‘’

๐‘กโˆ’๐‘Ž

๐‘ก

Hence ๐ฟ{๐‘“(๐‘ก)} = ๐ฟ{๐‘’

๐‘ก

1

๐‘ โˆ’ 1

โˆ’๐‘Ž๐‘ 

โˆ’๐‘Ž๐‘ 

โˆ’๐‘Ž๐‘ 

(iv) Here ๐‘“

= cos (๐‘ก โˆ’

2 ๐œ‹

3

) and ๐‘Ž =

2 ๐œ‹

3

2 ๐œ‹

3

) = cos (๐‘ก โˆ’

2 ๐œ‹

3

) or, ๐‘“

= cos ๐‘ก

cos ๐‘ก

2

Hence, ๐ฟ{๐น(๐‘ก)} = ๐‘’

โˆ’๐‘Ž๐‘ 

โˆ’

2 ๐œ‹

3

๐‘ 

2

1.5.3 Change of Scale Property:

Statement: If ๐ฟ

(๐‘ ), then ๐ฟ

1

๐‘Ž

๐‘ 

๐‘Ž

Proof:

โˆ’๐‘ ๐‘ก

โˆž

0

Let ๐‘Ž๐‘ก = ๐‘‡, then ๐‘Ž ๐‘‘๐‘ก = ๐‘‘๐‘‡, giving ๐‘‘๐‘ก =

1

๐‘Ž

At ๐‘ก = 0 : ๐‘‡ = 0 & ๐‘ก = โˆž: ๐‘‡ = โˆž

From (1.3), we obtain

โˆ’๐‘ (

๐‘‡

๐‘Ž

)

โˆž

0

โˆ’(

๐‘ 

๐‘Ž

)๐‘‡

โˆž

0

โˆž

0

[โˆซ ๐‘’

โˆ’๐‘ ๐‘ก

โˆž

๐‘ 

๐‘‘๐‘ ] ๐‘‘๐‘ก ,

after changing the order of integration.

โˆž

0

[

โˆ’๐‘ ๐‘ก

]

โˆž

0

[ 0 +

โˆ’๐‘ ๐‘ก

] ๐‘‘๐‘ก

โˆ’๐‘ ๐‘ก

โˆž

0

Example 1.5: Find the Laplace Transform of ๐‘ญ(๐’•) , where (i) ๐‘ญ(๐’•) =

๐’†

๐’‚๐’•

โˆ’๐œ๐จ๐ฌ ๐’ƒ๐’•

๐’•

(ii) ๐‘ญ

๐’†

โˆ’๐’‚๐’•

โˆ’๐’†

โˆ’๐’ƒ๐’•

๐’•

(iii) ๐‘ญ

๐ฌ๐ข๐ง ๐Ÿ๐’•

๐’•

(iv) ๐‘ญ

๐ฌ๐ข๐ง

๐Ÿ

๐’•

๐’•

(v) ๐‘ญ

๐’†

๐’•

โˆ’๐œ๐จ๐ฌ ๐’•

๐’•

(vi) ๐‘ญ

๐ฌ๐ข๐ง ๐Ÿ‘๐’• ๐œ๐จ๐ฌ ๐’•

๐’•

Solution: (i) Let ๐‘“(๐‘ก) = ๐‘’

๐‘Ž๐‘ก

โˆ’ cos ๐‘๐‘ก, then

๐‘Ž๐‘ก

โˆ’ cos ๐‘๐‘ก

๐‘Ž๐‘ก

cos ๐‘๐‘ก

1

๐‘ โˆ’๐‘Ž

๐‘ 

๐‘ 

2

+๐‘

2

๐‘Ž๐‘ก

โˆ’ cos ๐‘๐‘ก

โˆž

๐‘ 

2

2

โˆž

๐‘ 

= [log

log

2

2

]

= [log

2

2

]

= โˆ’ log

2

2

= log

2

2

(ii) Let ๐‘“

โˆ’๐‘Ž๐‘ก

โˆ’๐‘๐‘ก

, then

โˆ’๐‘Ž๐‘ก

โˆ’๐‘๐‘ก

โˆ’๐‘Ž๐‘ก

โˆ’๐‘๐‘ก

โˆ’๐‘Ž๐‘ก

โˆ’๐‘๐‘ก

โˆž

๐‘ 

โˆž

๐‘ 

[

log

โˆ’ log

)]

= [log (

)]

= โˆ’ log (

) = log (

(iii) Let ๐‘“

= sin 2 ๐‘ก, then

๐ฟ{๐‘“(๐‘ก)} = ๐ฟ{sin 2 ๐‘ก} =

2

sin 2 ๐‘ก

โˆž

๐‘ 

2

โˆž

๐‘ 

= [tan

โˆ’ 1

)]

= tan

โˆ’ 1

(โˆž) โˆ’ tan

โˆ’ 1

โˆ’ tan

โˆ’ 1

(vi) Let ๐‘“

= sin 3 ๐‘ก cos ๐‘ก =

1

2

sin 4 ๐‘ก + sin 2 ๐‘ก

, then

= ๐ฟ [

sin 4 ๐‘ก + sin 2 ๐‘ก

]

[

sin 4 ๐‘ก

sin 2 ๐‘ก

}]

[

2

2

]

sin 3 ๐‘ก cos ๐‘ก

โˆž

๐‘ 

โˆž

๐‘ 

[

2

2

] ๐‘‘๐‘ 

[tan

โˆ’ 1

) + tan

โˆ’ 1

)]

[

tan

โˆ’ 1

  • tan

โˆ’ 1

โˆ’ {tan

โˆ’ 1

) + tan

โˆ’ 1

)}]

[{

} โˆ’ {tan

โˆ’ 1

) + tan

โˆ’ 1

)}]

[๐œ‹ โˆ’ tan

โˆ’ 1

) โˆ’ tan

โˆ’ 1

)].