Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Integration by Substitution: A Comprehensive Guide with Examples, Cheat Sheet of Differential and Integral Calculus

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Typology: Cheat Sheet

2022/2023

Uploaded on 03/16/2023

Yasmin3433
Yasmin3433 🇹🇷

5

(1)

5 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1. Integration by Substitution
If y=g(u) is continuous on an open interval and u=u(x) is a differ-
entiable function whose values are in the interval, then for aand bin the
domain of u
Zb
a
g(u(x))u0(x)dx =Zu(b)
u(a)
g(u)du.
Examples: Evaluate the integrals
1. R1
0
ex
1+exdx. Substitute u= 1 + ex. Then du =exdx. If x= 0, then
u= 1 + e0= 2, and if x= 1, u = 1 + e1= 1 + e. Hence
Z1
0
ex
1 + exdx =Z1+e
2
1
udu = ln u|1+e
2= ln(1 + e)ln 2 = ln 1 + e
2.
2. R1
0
x
1+x2dx. Substitute u= 1 + x2. Then du = 2xdx. If x= 0, u =
1+02= 1, and if x= 1, u = 1 + 12= 2. Hence
Z1
0
x
1 + x2dx =Z2
1
1
u
du
2=1
2Z2
1
1
udu =1
2ln u|2
1=1
2(ln 2 ln 1) = 1
2ln 2
3. R3
1
1
x1+xdx.
Substitute u=1 + x. Solve for xin order ti find dx. We have x=u21
and dx = 2udu. If x= 1, u =1 + 1 = 2 and if x= 3, u =1 + 3 = 2.
Hence
Z3
1
1
x1 + xdx =Z2
2
1
(u21)u2udu = 2 Z2
2
1
(u1)(u+ 1)du =
=Z2
2
1
u1du Z2
2
1
u+ 1du = ln(u1)|2
2ln(u+ 1)|2
2
1
pf2

Partial preview of the text

Download Integration by Substitution: A Comprehensive Guide with Examples and more Cheat Sheet Differential and Integral Calculus in PDF only on Docsity!

  1. Integration by Substitution

If y = g(u) is continuous on an open interval and u = u(x) is a differ-

entiable function whose values are in the interval, then for a and b in the

domain of u ∫ (^) b

a

g(u(x))u′(x)dx =

∫ (^) u(b)

u(a)

g(u)du.

Examples: Evaluate the integrals

0

ex 1+ex^ dx.^ Substitute^ u^ = 1 +^ e

x. Then du = exdx. If x = 0, then

u = 1 + e^0 = 2, and if x = 1, u = 1 + e^1 = 1 + e. Hence

0

ex

1 + ex^

dx =

∫ (^) 1+e

2

u

du = ln u|

1+e 2 = ln(1 +^ e)^ −^ ln 2 = ln

1 + e

2

0

x 1+x^2 dx.^ Substitute^ u^ = 1 +^ x

(^2). Then du = 2xdx. If x = 0, u =

1 + 0^2 = 1, and if x = 1, u = 1 + 1^2 = 2. Hence

0

x

1 + x^2

dx =

1

u

du

2

1

u

du =

ln u|

2 1 =

(ln 2 − ln 1) =

ln 2

1

1 x

√ 1+x

dx.

Substitute u =

1 + x. Solve for x in order ti find dx. We have x = u^2 − 1

and dx = 2udu. If x = 1, u =

2 and if x = 3, u =

Hence ∫ (^3)

1

x

1 + x

dx =

√ 2

(u^2 − 1)u

2 udu = 2

√ 2

(u − 1)(u + 1)

du =

√ 2

u − 1

du −

√ 2

u + 1

du = ln(u − 1)|^2 √ 2

− ln(u + 1)|^2 √ 2

1

2

= (ln 1 − ln(

2 − 1)) − (ln 3 − ln(

2 + 1) = − ln 3 + ln

∫ π 2 0

sin x 1+cos^2 x dx.^ Substitute^ u^ = cos^ x.^ Then^ du^ =^ −^ sin^ xdx^ and if

x = 0, u = cos 0 = 1, and if x = π 2 , u = cos π 2 = 0. Hence

∫ π 2

0

sin x

1 + cos^2 x

dx = −

1

1 + u^2

du = − arctan u|

0 1 =^ −(arctan 0−arctan 1) =^

π

4

∫ (^) e 2 e

1 x

√ ln x

dx.

Substitute u = ln x. Then du = (^1) x dx. If x = e, u = ln e = 1 and if x = e^2

then u = ln e^2 = 2. Hence ∫ (^) e 2

e

x

ln x

dx =

1

u

du = 2

u|

2 1 = 2(