Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Indeterminate Forms Questions, Exams of Mathematics

Indeterminate Forms Questions for exam

Typology: Exams

2016/2017

Uploaded on 06/16/2017

vivekgarg284
vivekgarg284 🇮🇳

4

(1)

5 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Indeterminate Forms
1
Some Important results:
1.

123
1 x 1 x x x .......
 2.

234
xxx
Log 1 x x .......
234

3.
357
xxx
Sinx x .......
357
 4.
246
xxx
Cosx 1 .......
246

5.
35
x2x
Tanx x .......
315
 6 .
234
xxxx
e 1 x .......
234

7.
2
1xx11x
(1 x) e 1 .......
224




8. b
a
log(ab) log a l ogb; log(a / b) log a l og b; log a b loga; log a 1 
9.

1x
x0
Lim 1 x e

; log1 0; log e 1; log ; log0 ; e ; e 0;


1.
2
5
x0
1
Sinx x x
6
Lim x

2. 2
x0
xCosx Log(1 x)
Lim x

3.
12
3
x2
x0
xTanx
Lim
(e 1)
4.
1x
x0
(1 x) e
Lim x

5. x0
Sinx
Lim x
6.
x
x0
e1
Lim x
7. 2
x0
1Cosx
Lim x
8.
xx
x0
ab
Lim x
9. 2
x
x0
xe Log(1 x)
Lim x

10. 3
x0
xSinx
Lim Tan x
11. x1
logx
Lim x1
12. 2
x0
Tanx x
Lim xTanx
13.
xSinx
x0
ee
Lim xSinx
14.
1x
2
x0
1
(1 x) e ex
2
Lim x

15.
12
6
x0
SinxSin x x
Lim x
16.
1
2
x0
SinxSin x
Lim x
17.
22
4
x0
Sin x x
Lim x
18.
x
x0
1x
eLoge
Lim Tanx x



19.
x2
Cosx
Lim
x2





20. x0
logx
Lim Cotx
21. x0
logSin2x
Lim logSinx
22.
2
x0
log log(1 x )
Lim log logCosx
23.
x2
1
Lim Secx 1Sinx



24.
x0
Lim x lo gSinx
25. x0
Cotx
Lim(Cosx)
26.
x
x
a
Lim 1 x




27.
2
x0
Cot x
Lim(Cosx)
28. 2
2
x0
11
Lim xSinx



29. 2
x0
1Log(1x)
Lim xx



30.
1x
x0
Sinx
Lim x



31.
2
1x
x0
Tanx
Lim x



32. x0
1
Cotx x
Lim x





33. x0
Co sec x Cotx
Lim x



34.

x0
Lim Sinx logx
35.

x0
Lim x logx
36.

x2
Lim Secx Tanx
37. x
x0
11
Lim e1x



pf3
pf4
pf5

Partial preview of the text

Download Indeterminate Forms Questions and more Exams Mathematics in PDF only on Docsity!

Some Important results :

(^1 2 ) 1 x 1 x x x .......

2 3 4 x x x Log 1 x x ....... 2 3 4

3 5 7 x x x Sinx x ....... 3 5 7

2 4 6 x x x Cosx 1 ....... 2 4 6

3 5 x 2x Tanx x ....... 3 15

2 3 4 x x^ x^ x e 1 x ....... 2 3 4

1 2 x x^ 11x (1 x) e 1 ....... 2 24

b a

log(ab)  log a  l og b; log(a / b)  log a  l og b; log a  b loga; log a  1

1 x

x 0

Lim 1 x e 

  ; log1 0; log e 1; log ; log0 ; e ; e 0;

           

2

x 0 5

Sinx x x 6 Lim  x

x 0 2

xCosx Log(1 x) Lim  x

1 2

3 x (^0) x (^2)

x Tanx Lim

(e 1)

 

1 x

x 0

(1 x) e Lim  x

x 0

Sinx Lim  x

x

x 0

e 1 Lim  x

x 0 2

1 Cosx Lim  x

x x

x 0

a b Lim  x

2

x

x 0

xe Log(1 x) Lim  x

3 x 0

x Sinx Lim  Tan x

x 1

logx Lim  (^) x  1

2 x 0

Tanx x Lim  x Tanx

x Sinx

x 0

e e Lim  x Sinx

1 x

x 0 2

(1 x) e ex 2 Lim  x

1 2

6 x 0

SinxSin x x Lim x

1

2 x 0

SinxSin x Lim x

2 2

x 0 4

Sin x x Lim  x

x

x 0

1 x e Log e Lim  Tanx x

x (^2)

Cosx Lim

x 2

^ 

x 0

logx Lim  Cotx

x 0

logSin2x Lim  logSinx

2

x 0

log log(1 x ) Lim  log logCosx

x (^2)

Lim Secx  1 Sinx

x 0

Lim x logSinx 

x 0

Cotx Lim(Cosx) 

x

x

a Lim 1  x

2

x 0

Cot x Lim(Cosx) 

  1. (^2) 2 x 0

Lim  x Sin x

  1. (^2) x 0

1 Log(1 x) Lim  x x

1 x

x 0

Sinx Lim  x

(^12) x

x 0

Tanx Lim  x

x 0

Cotx x Lim  x

x (^0)

Co sec x Cotx Lim  x

x (^0)

Lim Sinx logx 

x 0

Lim x logx 

x (^2)

Lim Secx Tanx ^ 

x x (^0)

Lim  e 1 x

  1. Find the values of ‘a’ and ‘b’ in order that 3 x 0

x(1 aCosx) bSinx

Lim

 x

may be equal to ‘1’.

  1. Find the values of ‘a’, ‘b’ and ‘c’ so that

x x

x 0

ae bCosx ce

Lim

xSinx

.

1 x

x 0

Lim(Cosx) 

1 (1 x)

x 0

Lim(x)

(^12) x

x (^0)

Sinx Lim  x

1 x

x

Logx Lim   x

1

1 x

x

Lim Tan x 2

 

1 Logx

x 0

Lim(Co sec x) 

x (^1)

x Lim(1 x)Tan  2

Tan 2x

4

x

Lim (Tanx) ^ 

x (^2)

Lim 1 Sinx Tanx ^ 

x

Lim xTan 1   x

3

2 x

x Logx Lim   1 x x