






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Notes; Professor: Tatro; Class: Network Analysis; Subject: Electrical & Electronic Engr; University: California State University - Sacramento; Term: Unknown 1989;
Typology: Study notes
1 / 10
This page cannot be seen from the preview
Don't miss anything!
Preview
Preview
cos at dt sin at a
∫^ =
sin at dt cos at a
∫ =
2
t sin at dt sin at t cos at a a
∫
2
t cos at dt cos at t sin at a a
∫
Preview
cos 2 n π = 1
sin 2 n π = 0
cos ( 1)
n n π = −
sin n π = 0
( 1) for n even^2 cos (^2 0) for n odd
n n π ⎧ −⎪ = ⎨ ⎪⎩
21 ( 1) for n odd sin (^2 0) for n even
n n π
− ⎧ −⎪ = ⎨ ⎪⎩
2
j n
π
jn n
π
2 2 21
( 1) for n even
( 1) for n odd
n jn
n
e
j
π
−
Section 16.1 Overview
f ( ) t = f t ( ± nT )
f ( t 0 (^) ) = f t ( 0 − T ) = f ( t 0 + T )= f ( t 0 − 2 T ) = f t ( 0 + 2 T ) and so on...
Section 16.1 Fourier Series Analysis
0 0 1
( ) (^) v n cos (^) n sin n
f t a a n ω t b n ω t
∞
=
= + (^) ∑ +
Section 16.1 Dirichlet’s Conditions
0
0
( )
t T
t
f t dt
∫
Section 16.1 Fourier Series
Section 16.2 The Fourier Coefficients
0
0
0
( ) cos
t T an (^) t f t k t dt T
ω
= ∫
0
0
t T av (^) t f t dt T
= (^) ∫
0
0
0
( ) sin
t T bn (^) t f t k t dt T
ω
= ∫
π ω = = 2 π f
Example
Find the Fourier Series for the following signal.
The period of this signal is T = 2π.
0
π ω =
π
π
= = (^1) sec rad
0
T av f t dt T
∫
2
0
t dt
π
π π
= (^) ∫ ( ) 12 2 22 0
t
π
π
( )
2 2
π π
2
2
π
π
Example
0 0
( ) cos
T an f t k t dt T
= ω ∫
2
0
cos 2 2
t kt dt
π
π π
∫
2 (^2 )
cos 4
t kt dt
π
π
∫
2 (^ )
1 2 2 0
cos sin 2 k^
kt kt kt
π
π
2 12 (^ )^12 (^ )
cos 2 2 sin 2 cos 0 0sin 0 2 k^ k
k π k π k π k k π
2 2
1 1 2
k k π
⎣ ⎦ 2 [ ]
2 π
Recall the integral solution:
2
1 ∫ x^ cos^ ax dx^ =^ a (cos^ ax^ + ax^ sin^ ax )
Example
0 0
( ) sin
T bk f t k t dt T
= ω ∫
2
0
sin 2 2
t kt dt
π
π π
∫
2 (^2 )
sin 2
t kt dt
π
π
∫
2 (^ )
1 2 2 0
sin cos 2
k kt^ kt^ kt
π
π
2 12 (^ )^12 (^ )
sin 2 2 cos 2 sin 0 0 cos 0 2 k^ k
k π k π k π k k π
2 2
1 1 2
2 k^ k
k π π
k
k
π
π
π k
The integral solution that was used is
2 sin 1 (sin cos ) a ∫ x^ ax dx^ =^ ax^ − ax^ ax
Fourier Series with 10 terms Fourier Series with 100 terms
Fourier Series with 1,000 terms Section 16.3 The Effect of Symmetry on the Fourier Coefficients
Section 16.3 Even Symmetry
2
2 2
1 ( ) cos(45 ) 2
f x = =
D 1 ( ) cos( 45 ) 2
⇒ f − x = − =
D
Section 16.3 Even Symmetry
2
0
T
∫
2
0 0
T
∫
Section 16.3 Odd Symmetry
3
3 3
1 ( ) sin(45 ) 2
f x = =
D 1 ( ) sin( 45 ) 2
⇒ f − x = − = −
D
Section 16.3 Odd Symmetry
2
0 0
T
= (^) ∫ ω
Section 16.3 Half-wave symmetry
Section 16.3 Quarter-wave symmetry
Section 16.4 Compact Form of the Fourier Series
0 1
( ) (^) v n cos( (^) n ) n
f t a A n ω t θ
∞
=
= + (^) ∑ −
An cos( n ω o (^) t − θ n ) = an cos n ω o t + bn sin n ω (^) ot
2 2 1 where tan
n n n n n n
b A a b and a
θ
= an cos n ω o t + bn cos( n ω (^) ot − 90 )
D
Example – Compact Fourier Series
Find the compact trigonometric Fourier Series for the periodic signal x(t).
In this case T 0 = π.
0 0
1 Fundamental frequency f T
=
1 Hz π
=
0 0
2
T
π ω =
2
sec
π
π
= 2 sec
Therefore
0 0 1
( ) (^) v n cos (^) n sin n
f t a a n ω t b n ω t
∞
=
= + (^) ∑ + 1
v n cos^2 n sin^2 n
a a n t b n t
∞
=
= + (^) ∑ +
Section 16.5 An Application of Fourier Series
0
2
T
π ω =
Section 16.5 An Application of Fourier Series
av = 0 by odd symmetry
ak = 0 by odd symmetry
bk = 0 for k even by half − wave symmetry
2
0 0
( ) sin
T
bk f t k t dt for k odd by half wave symmetry T
= ω − ∫
2
0
sin
T
Vm k t dt T T
π = (^) ∫ 0 02 2
( ) cos
m T k T
k t T^ π
= − ω
1 1
cos cos 0 2
V m (^) k T k
k T T
π π
π =− =
Vm
k π
4 Vm
k π
Section 16.5 An Application of Fourier Series
0
m sin
ω t π
sin 3 3
V m (^) ω t
π
1 0 1,3,5,...
sin
m g (^) n n
v n ω t π
∞
=
= (^) ∑
0
sin 5 .... 5
V m (^) ω t
π
Section 16.5 An Application of Fourier Series
g
v H j v
ω =
1 0 1,3,5,...
sin
m g n n
v n ω t π
∞
=
= (^) ∑
1
(^0 )
j C g j C
v v R
ω
ω
vg j ω RC
1 1 1
g o
v v j ω RC
4 0
1
V m
j RC
π
ω
D
0
4
2 2 1 0 1
1 ( ) tan ( )
V m
RC RC
π ω ω
−
D
1 (^0 ) 0
tan ( ) 1 ( )
V m RC RC
ω π ω
Section 16.5 An Application of Fourier Series
1 0 0
(^1 ) 0
sin tan ( )
m
o
t RC v RC
ω ω π
ω
1 0 0
(^3 ) 0
sin 3 tan (3 ) 3
1 (3 )
m
o
t RC
v RC
ω ω π
ω
Section 16.5 An Application of Fourier Series
1 0 0
2 0
sin tan ( )
m
ok
k t k RC k v k RC
ω ω π
ω
− ⎡ − ∠ ⎤ ⎣ ⎦ =
1 0 0
2 1,3,5,... (^0)
4 sin^ tan^ (^ )
m o n
V n^ t^ n^ RC v n n RC
ω ω
π ω
∞ −
=
∑
Section 16.5 An Application of Fourier Series
1 0 0
2 1,3,5,... (^0)
4 sin^ tan^ (^ )
m o n
V n^ t^ n^ RC v n n RC
ω ω
π ω
∞ −
=
∑
1 4 sin^0 tan^ (^0 ) 0
m o
V n^ t^ n^ RC v n
ω ω
π
− ⎡ − ∠ ⎤ ⎣ ⎦ = = ∞
Section 16.5 An Application of Fourier Series
0 2 0 1,3,5,...
4 sin^90 m
n
V n^ t
RC n
ω
πω
∞
=
≈ (^) ∑
D
1 0 0
1,3,5,... 2 0
4 sin^ tan^ (^ )
m o n
V n^ t^ n^ RC v n n RC
ω ω
π ω
∞ −
=
∑
0 2 0 1,3,5,...
(^4) m cos( )
n
V n t
RC n
ω
πω
∞
=
= (^) ∑
Section 16.5 An Application of Fourier Series
Section 16.6 Average-Power Calculations with Periodic Functions
0 1
dc n cos(^ vn ) n
v V V n ω t θ
∞
=
= + (^) ∑ −
0 1
dc n cos(^ in ) n
i I I n ω t θ
∞
=
= + (^) ∑ −
Section 16.6 Average-Power Calculations with Periodic Functions
0
0
1 t^ T Pavg (^) t p dt T
= (^) ∫
0 0
(^1) t T Pavg V Idc dc t (^) t for the dc components T
=
0
0
1 t T
t
vi dt T
= (^) ∫
0 0 1
n n cos(^ vn ) cos(^ in )^. n
V I n t n t dt for the harmonics T
ω θ ω θ
∞
=
Section 16.6 Average-Power Calculations with Periodic Functions
1 1 cos α cos β= 2 cos(α − β) + 2 cos( α +β)
0 0 0 0 1
cos( ) cos( )
t T avg dc dc t n n vn in n
P V I t V I n t n t dt T T
ω θ ω θ
∞
=
= + (^) ∑ − −
0
0
0 (^1) integral = zero
[cos( ) cos(2 )] 2
n n^ t^ T dc dc (^) t vn in vn in n
V I n t dt T
θ θ ω θ θ
∞ (^) +
=
= + (^) ∑ (^) ∫ − + − −
1
[cos( ) 2
n n dc dc vn in n
θ θ
∞
=
= + (^) ∑ − 1
[cos( ) 2
n n dc dc vn in n
V I θ θ
∞
=
= + (^) ∑ −
Example
v = 10 + 30cos( ω o (^) t − θ 1 ) + 20cos(2 ω o (^) t − θ 2 ) + 5cos(3ω (^) o (^) t −θ 3 ) + 2cos(5ω (^) o t −θ 5 )
2 2
1 2
n rms v n
V a
∞
=
∑
2 2 2 2 2 30 20 5 2 10 2 2 2 2
= 27.65 Vrms
Section 16.8 The Exponential Form of the Fourier Series
Section 16.9 Amplitude and Phase Spectra
End of Chapter 16