Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Formula Handbook, Study notes of Mechanical Engineering

mechanical

Typology: Study notes

2011/2012

Uploaded on 11/20/2012

08701a0311
08701a0311 🇮🇳

4.3

(3)

2 documents

1 / 72

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
6th Edition 2011 350
Name__________________________
Course__________________________
Link to Contents
Introduction
Formula
Handbook
including
Engineering
Formulae,
Mathematics,
Statistics
and
Computer Algebra
http://ubuntuone.com/p/ZOF/ - pdf
http://ubuntuone.com/p/dAn - print
http://ubuntuone.com/p/ZOE/ - OOo (edit)
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48

Partial preview of the text

Download Formula Handbook and more Study notes Mechanical Engineering in PDF only on Docsity!

6th Edition 2011 350

Name__________________________

Course__________________________

Link to Contents

Introduction

Formula

Handbook

including

Engineering

Formulae,

Mathematics,

Statistics

and

Computer Algebra

http://ubuntuone.com/p/ZOF/ - pdf

http://ubuntuone.com/p/dAn - print

http://ubuntuone.com/p/ZOE/ - OOo (edit)

Introduction

This handbook was designed to provide engineering students at Aberdeen College

with the formulae required for their courses up to Higher National level (2nd year

university equivalent).

In order to use the interactive graphs you will need to have access to Geogebra

(see 25 ). If you are using a MS Windows operating system and you already have

Java Runtime Environment loaded then no changes will be required to the registry.

This should mean that no security issues should be encountered. For Mac and Linux

(and for MS Windows if you have problems)

see http://www.geogebra.org/cms/en/portable

It is typed in Open Office.org. Future developments will include more hyperlinks

within the handbook and to other maths sites, with all the illustrations in it

produced with Geogebra (see 25 ) or OOo.

Any contributions will be gratefully accepted and acknowledged in the handbook.

If you prefer, you can make changes or add to the handbook within the terms of

the Creative Commons licence. Please send me a copy of your work and be

prepared to have it incorporated or adapted for inclusion in my version.

My overriding concern is for the handbook to live on and be continuously improved.

I hope that you find the handbook useful and that you will enjoy using it and that

that you will feel inspired to contribute material and suggest hyperlinks that could

be added.

Many thanks to my colleagues at Aberdeen College for their contributions and help

in editing the handbook. Special thanks are due to Mark Perkins at Bedford College

who adopted the handbook for his students, helped to format the contents and

contributed to the contents. Without Mark's encouragement this project would

have never taken off.

If you find any errors or have suggestions for changes please contact the editor:

Peter K Nicol. (p.nicol@abcol.ac.uk) (peterknicol@gmail.com) Contents

6th Edition XI/MMXI

15/12/

350

  • 1 Recommended Books........................................................................................................... - 1.1 Maths........................................................................................................................... - 1.2 Mechanical and Electrical Engineering
  • 2 Useful Web Sites..................................................................................................................
  • 3 Evaluation............................................................................................................................ - 3.1.1 Accuracy and Precision................................................................................................................... - 3.1.2 Units.................................................................................................................................................... - 3.1.3 Rounding............................................................................................................................................
  • 4 Electrical Formulae and Constants - 4.1 Basic - 4.2 Electrostatics................................................................................................................ - 4.3 Electromagnetism - 4.4 AC Circuits
  • 5 Mechanical Engineering......................................................................................................... - 5.1.1 Dynamics: Terms and Equations................................................................................................... - 5.1.2 Conversions...................................................................................................................................... - 5.2 Equations of Motion....................................................................................................... - 5.3 Newton's Second Law.................................................................................................. - 5.3.1 Centrifugal Force............................................................................................................................ - 5.4 Work done and Power.................................................................................................. - 5.5 Energy....................................................................................................................... - 5.6 Momentum / Angular Impulse........................................................................................ - 5.7 Specific force / torque values........................................................................................ - 5.8 Stress and Strain......................................................................................................... - 5.9 Fluid Mechanics.......................................................................................................... - 5.10 Heat Transfer............................................................................................................ - 5.11 Thermodynamics.......................................................................................................
  • 6 Maths for Computing........................................................................................................... - 6.1.1 Notation for Set Theory and Boolean Laws
  • 7 Combinational Logic............................................................................................................ - 7.1.1 Basic Flowchart Shapes and Symbols........................................................................................
  • 8 Mathematical Notation – what the symbols mean.................................................................... - 8.1.1 Notation for Indices and Logarithms............................................................................................ - 8.1.2 Notation for Functions....................................................................................................................
  • 9 Laws of Mathematics........................................................................................................... - 9.1 Algebra – sequence of operations.................................................................................
  • 10 Changing the subject of a Formula (Transposition)................................................................
  • 11 Simultaneous Equations with 2 variables.............................................................................
  • 12 Matrices
  • 13 The Straight Line
  • 14 Quadratic Equations
  • 15 Areas and Volumes...........................................................................................................
  • 16 The Circle......................................................................................................................... - 16.1.1 Radian Measure...........................................................................................................................
  • 17 Trigonometry.................................................................................................................... - 17.1.1 Notation for Trigonometry........................................................................................................... - 17.2 Pythagoras’ Theorem.................................................................................................
    • The Triangle...................................................................................................................... - 17.2.1 Sine Rule....................................................................................................................................... - 17.2.2 Cosine Rule................................................................................................................................... - 17.2.3 Area formula..................................................................................................................................
      • 17.3 Trigonometric Graphs................................................................................................
        • 17.3.1 Degrees - Radians Conversion..................................................................................................
      • 17.4 Trigonometric Identities..............................................................................................
      • 17.5 Multiple / double angles..............................................................................................
    • 17.6 Sinusoidal Wave........................................................................................................
  • 18 Complex Numbers.............................................................................................................
  • 19 Vectors............................................................................................................................
  • 20 Co-ordinate Conversion using Scientific Calculators..............................................................
  • 21 Indices and Logs............................................................................................................... - 21.1.1 Rules of Indices: - 21.1.2 Definition of logarithms................................................................................................................ - 21.1.3 Rules of logarithms:..................................................................................................................... - 21.1.4 Infinite Series................................................................................................................................ - 21.1.5 Hyperbolic Functions - 21.1.6 Graphs of Common Functions...................................................................................................
  • 22 Calculus - 22.1.1 Notation for Calculus....................................................................................................................
    • 22.2 Differential Calculus - Derivatives................................................................................
      • 22.2.1 Maxima and Minima.....................................................................................................................
      • 22.2.2 Differentiation Rules.....................................................................................................................
      • 22.2.3 Formula for the Newton-Raphson Iterative Process...............................................................
      • 22.2.4 Partial Differentiation
      • 22.2.5 Implicit Differentiation..................................................................................................................
      • 22.2.6 Parametric Differentiation............................................................................................................
    • 22.3 Integral Calculus - Integrals........................................................................................
      • 22.3.1 Integration by Substitution..........................................................................................................
      • 22.3.2 Integration by Parts......................................................................................................................
      • 22.3.3 Indefinite Integration....................................................................................................................
      • 22.3.4 Area under a Curve......................................................................................................................
      • 22.3.5 Mean Value...................................................................................................................................
      • 22.3.6 Root Mean Square (RMS)..........................................................................................................
      • 22.3.7 Volume of Revolution
      • 22.3.8 Centroid..........................................................................................................................................
      • 22.3.9 Partial Fractions............................................................................................................................
      • 22.3.10 Approximation of Definite Integrals..........................................................................................
        • 22.3.10.1 Simpson's Rule..................................................................................................................
        • 22.3.10.2 Trapezium Method.............................................................................................................
    • 22.4 Laplace Transforms
    • 22.5 Approximate numerical solution of differential equations................................................
    • 22.6 Fourier Series.
      • 22.6.1 Fourier Series - wxMaxima method...........................................................................................
  • 23 Statistics.......................................................................................................................... - 23.1.1 Notation for Statistics...................................................................................................................
    • 23.2 Statistical Formulae...................................................................................................
      • 23.2.1 Regression Line
      • 23.2.2 Tables of the Normal Distribution
      • 23.2.3 Critical Values of the t Distribution.............................................................................................
      • 23.2.4 Normal Distribution Curve...........................................................................................................
      • 23.2.5 Binomial Theorem........................................................................................................................
      • 23.2.6 Permutations and Combinations................................................................................................
  • 24 Financial Mathematics.......................................................................................................
  • 25 Recommended Computer Programs...................................................................................
  • 26 Computer Input
    • 26.1 wxMaxima Input........................................................................................................
      • 26.1.1 Newton Raphson..........................................................................................................................
      • 26.1.2 Differential Equations...................................................................................................................
      • 26.1.3 Runge-Kutta..................................................................................................................................
    • 26.2 Mathcad Input
  • 27 Using a Spreadsheet to find the ‘best fit’ formula for a set of data...........................................
  • 28 Calibration Error................................................................................................................
  • 29 SI Units - Commonly used prefixes......................................................................................
  • 30 Electrical Tables................................................................................................................
  • 31 THE GREEK ALPHABET...................................................................................................

1 Recommended Books

referred to by author name in this handbook

1.1 Maths

General pre-NC and NC : Countdown to Mathematics ; Graham and Sargent

Vol. 1 ISBN 0-201-13730-5, Vol. 2 ISBN 0-201-13731-

NC Foundation Maths , Croft and Davison

ISBN 0-131-97921-

NC and HN and Degree : Engineering Mathematics through Applications ;

K Singh Kuldeep Singh, ISBN 0-333-92224-7.

www.palgrave.com/science/engineering/singh

Engineering Mathematics , 6th Edition, J Bird

ISBN 1-8561-7767-X

HN and degree: Higher Engineering Mathematics , 4

th

Edition, J Bird,

J Bird ISBN 0-7506-6266-

Degree Engineering Mathematics 6

th

Edition , K A Stroud

ISBN 978-1- 4039-4246-

1.2 Mechanical and Electrical Engineering

NC Advanced Physics for You , K Johnson, S Hewett et al.

ISBN 0 7487 5296 X

Mechanical Engineering

NC and HN Mechanical Engineering Principles , C Ross, J Bird

ISBN 0750652284

Electrical Engineering

NC and HN Basic Electrical Engineering Science

Ian McKenzie Smith, ISBN 0-582-42429-

The Open University There are a lot of excellent courses to study and if you

want to improve your maths I suggest that you start here

http://mathschoices.open.ac.uk/

Read the text very carefully on all the pages and then go to

http://mathschoices.open.ac.uk/routes/p6/index.html and try the

quizzes.

Plus Magazine Plus magazine opens a door to the world of maths, with

all its beauty and applications, by providing articles from

the top mathematicians and science writers on topics as

diverse as art, medicine, cosmology and sport. You can

read the latest mathematical news on the site every week,

browse our blog, listen to our podcasts and keep

up-to-date by subscribing to Plus (on email, RSS,

Facebook, iTunes or Twitter).

http://plus.maths.org/content/

Paul's Online Math Notes Recommended by June Cardno,

Banff and Buchan College

http://tutorial.math.lamar.edu/

Waldomaths Some excellent interactive tools - Equations 1 and 2 in

particular for transposition practice.

http://www.waldomaths.com/

HND Engineer As Alasdair Clapperton says “The aim of this website to

assist, enlighten and inspire Scottish NC/HNC/HND

engineering students within the current Scottish

Government drive towards renewable energy targets”.

http://www.hndengineer.co.uk/

If you come across any Engineering or Mathematics sites that might be useful

to students on your course please tell me (Peter Nicol) - p.nicol@abcol.ac.uk

3 Evaluation

3.1.1 Accuracy and Precision

Example: Target = 1.234 - 4 possible student answers

Not Accurate, not Precise 1.270, 2.130, 0.835, 1.

Accurate but not Precise 1.231, 1.235, 1.232, 1.

Precise but not Accurate 1.276, 1.276, 1.276. 1,

Precise and Accurate 1.234, 1.234, 1.234, 1.


3.1.2 Units

Treat units as algebra -

for example KE =

1

2

m v

2

where m = 5 kg and v = 12

m

s

.

KE =

1

2

× 5 × kg ×

12 × m

s

2

Standard workshop

KE =

1

2

× 5 × kg ×

12

2

× m

2

s

2

tolerance ±0. mm

KE =

1

2

× 5 × 12

2

×

kg × m

2

s

2

KE = 360

kg m

2

s

2

KE = 360 J


3.1.3 Rounding

Do not round calculations until the last line.

Round to significant figures preferably in engineering form

Example: A =

d

2

4

where d = 40

A =1256. A =1.256637061× 10

3

A =1.257× 10

3

rounded to 4 sig fig ( A = 1257 )

There should be at least 2 more significant figures in the calculation than in

the answer.

4.4 AC Circuits

Unit Symbol

Force on a conductor F = B I ℓ N

Electromotive Force E = B ℓ v V

Instantaneous emf e = E sin  V

Induced emf e = N

d

dt

e = L

di

dt

V

RMS Voltage

V

rms

× V

peak

V

rms

≈0.707 V

peak

V

Average Voltage V AV

× V

peak

V

AV

≈0.637 V

peak

V

Angular Velocity = 2  f rad/s

Transformation Ratios

V

s

V

p

N

s

N

p

I

p

I

s

Potential Difference V = I Z V

Power Factor pf =cos 

Capacitive Reactance

X

C

2  f C

Inductive Reactance

X

L

= 2  f L

Admittance

Y =

Z

S

True Power P = V I cos  W

Reactive Power Q = V I sin  VAr

Apparent Power S = V I

= Pj Q VA

Note: I

is the complex conjugate of the phasor current. See 17


Thanks to Iain Smith, Aberdeen College

5 Mechanical Engineering

[K Singh pp 2 – 98 especially 32 – 40 and 69 - 73]

5.1.1 Dynamics: Terms and Equations

Linear Angular

s = displacement (m)  = angular displacement (rad)

u = initial velocity (m/s)

1

initial velocity (rad/s)

v = final velocity (m/s)

2

final velocity (rad/s)

a = acceleration (m/s

2

)  = acceleration (rad/s

2

)

t = time (s) t = time (s)


5.1.2 Conversions

Displacement s = r

Velocity v = r

v =

s

t

t

Acceleration a = r

radians = 1 revolution = 360

o

, i.e. 1 rad =

o

o

see 17.4.

If N = rotational speed in revolutions per minute (rpm), then

2  N

rad/s


5.2 Equations of Motion

Linear Angular

v = ua t

2

1

 t

s =

uvt =

1

2

t

s = ut

a t

2

1

t

t

2

v

2

= u

2

 2 a s

2

2

1

2

a =

v – u

t

2

1

t


5.6 Momentum / Angular Impulse

Impulse = Change in momentum

Linear Angular

Ft = m 2

v – m 1

u Tt = I 2

2

− I

1

1

If the mass does not change: Ft = m vmu


5.7 Specific force / torque values

Force to move a load: F = m g cos  m g sin  m a

Force to hoist a load vertically = 90

o

F = m gm a = mga

Force to move a load

along a horizontal surface = 0

o

F = m gm a

Winch drum torque T app

= T

F

 F

r

 I 


5.8 Stress and Strain

Stress   = load / area

F

A

Strain = change in length / original length

l

l

or

x

l

E = Stress / Strain

E =

Bending of Beams

M

I

y

E

R

2nd Moment of Area (rectangle) I =

b d

3

A h

2

Torsion Equation

T

J

r

G 

L

2

nd

Moment of Area (cylinder) J =

 D

4

d

4


Thanks to Frank McClean and Scott Smith, Aberdeen College

5.9 Fluid Mechanics

Mass continuity ˙ m = A V , or ˙ m = A C

Bernoulli’s Equation

p

g

C

2

2 g

z = constant

or

p

1

g

C

1

2

2 g

z 1

p

2

g

C

2

2

2 g

z 2

z F

Volumetric flow rate Q = A v

Actual flow for a venturi-meter Q actual

= A

1

c d

2 g h

m

f

A

1

A

2

Efunda Calculator

Actual flow for an orifice plate Q = A 0

c d

2 g h

m

f

D

0

D

1

4

Reynold’s number Re=

ρ V D

v

Re=

V D

Efunda calculator

Darcy formula for head loss h =

4 f l v

2

2 g d

, h =

4 f l v

2

2 d

energy loss

Efunda Calculator


5.10 Heat Transfer

Through a slab

Q =

k AT 1

– T

2

x

Through a composite

Q =

 T

 R

where

 R =

x 1

k 1

x 2

k 2

h 1

h 2

Through a cylindrical pipe

Q =

 T

 R

where

 R =

2  R

1

h 1

ln

R

2

R

1

2  k 1

ln

R

3

R

2

2  k 2

2  R

3

h 3


6 Maths for Computing

a n a to the base n

a 10

decimal; denary ( a d) a 2

binary ( a b)

a 16

hexadecimal ( a h) a 8

octal ( a o)


3

(1000) kilo 2

10

 1024  kilobyte

6

Mega 2

20

2

megabyte

but

9

Giga 2

30

3

gigabyte

12

Tera 2

40

4

terabyte

15

Peta 2

50

5

petabyte

_____________________________________________________________

6.1.1 Notation for Set Theory and Boolean Laws

[J Bird pp 377 - 396]

E universal set

A ={ a , b , c … } a set A with elements a , b , c etc

aA a is a member of A BA

the empty set ( Ø is also used)

BA B is a subset of A

A ∪ B A  B

Set theory Boolean

∪ union ∨  OR

intersection ∧ ⋅

AND A ∩ B A ⋅ B

A ' complement of A A NOT

A' A

E

A B

E

A B

E

A B

E

B

A

E

E

A B

.a

.b

.c

7 Combinational Logic

A  0 = A A ⋅ 0 = 0

A  1 = 1 A ⋅ 1 = A

A ⋅ A = A A  A = A

A A = 0 A  A = 1

A = A

A ⋅ B = B ⋅ A A  B = B  A

A ⋅ B  C = A ⋅ B  A ⋅ C 

A  B ⋅ C = A  B ⋅ A  C 

A ⋅ B ⋅ C = C ⋅ A ⋅ B  A  B  C = C  A  B 

A ⋅ A  B = A A  A ⋅ B = A

De Morgan's Laws

A ⋅ B ⋅ C ⋅...= A  B  C ... A  B  C ...= A ⋅ B ⋅ C ⋅...


7.1.1 Basic Flowchart Shapes and Symbols

Start / End Input / Output

Action or Process Connector

Decision Flow Line


AB implies A = k B where k is a constant (direct variation)

x ∣ the modulus of x

. The magnitude of the number x ,

irrespective of the sign. ∣− 3 ∣= 3 =∣ 3 ∣

∞ infinity

implies


8.1.1 Notation for Indices and Logarithms

a

n

abbreviation for a × a × a × a ...× a (n terms). see 21

x

or ^ or x

y

or y

x

or a

b

on a calculator.

a the positive square root of the number a.

x = x

1

2

= x

k

a k th root of a number a.

3

k

a = a

1

k.

e

x

exp  x  (2.71828.... to the power of x ). See 21.

log e

x ln  x  on a calculator. The logarithm of x to the base e

log 10

x log  x  on a calculator. The logarithm of x to the base 10


8.1.2 Notation for Functions

fx  a function of x. Also seen as gx  , hx  , yx

f

− 1

x  the inverse of the function labelled fx

g ° f the composite function - first f then g. or gfx .


9 Laws of Mathematics

Associative laws - for addition and multiplication

a  bc = ab  c ab c = a bc


Commutative laws - for addition and multiplication

ab = ba but a – bba

a b = b a but

a

b

b

a


Distributive laws - for multiplication and division

abc = a ba c

bc

a

b

a

c

a


Arithmetical Identities

x  0 = x x × 1 = xx × 0 = 0 


Algebraic Identities K Singh pp 73 – 75

ab

2

= ab  ab = a

2

 2 a bb

2

a

2

- b

2

= ab  ab

ab

3

= ab  a

2

 2 a bb

2

= a

3

 3 a

2

b  3 ab

2

b

3

see 21.1.


Other useful facts

a – b = a − b

a

b

= a ÷ b =

a

×

b

a −− b = a −− b = ab


a

b

c

d

a db c

b d

a

b

×

c

d

a c

b d

see 22.3.8, 4

a

b

÷

c

d

a

b

×

d

c

MC

ab  cd = acadbcbd FOIL


MC