


Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
The answer to a ... In this worksheet we will factor polynomials. ... The first step in factoring polynomials is to factor out the greatest common.
Typology: Summaries
1 / 4
This page cannot be seen from the preview
Don't miss anything!
On special offer
In the multiplication problem , 5 and 4 are factors and 20 is the product.
In the multiplication problem (^ )^ , are the factors and is the product.
If we reverse the problem, (^ )^ , we say we have factored into.
Name the factors and the product in each problem.
In the polynomial , 5 is the largest integer that will divide 5x and 35, and we cannot factor out any variable because the second term, 35, does not have a variable part.
To factor we write: (^ )^.
In the polynomial , 3 is the largest integer that will divide. We can factor out because each term has at least one factor of (look for the term with the lowest degree of each variable).
To factor we write: (^ ).
In the polynomial , 4 is the largest integer that will divide. We can factor out and because each term has at least one factor of and two factors of.
To factor we write: ( ).
Find the largest integer that will divide all the terms.
Find the largest degree of that can be factored out of all the terms.
Factor the polynomials.
To factor polynomials, find the greatest common factor (GCF) of the coefficients and factor it out- divide each term by the GCF. Then find the greatest common factor (GCF) of the variables by finding the lowest power of each variable that will divide all terms and factor it out- divide each term by GCF. Move the GCF to the outside and write in parenthesis what is remaining, after you factor out the GCF.
Factor each of the following polynomials.
If the leading coefficient is negative, always factor out the negative!
Find the largest integer that will divide all the terms.
Find the largest degree of that can be factored out of all the terms.
Factor the polynomials.
To factor polynomials, find the greatest common factor (GCF) of the coefficients and factor it out- divide each term by the GCF. Then find the greatest common factor (GCF) of the variables by finding the lowest power of each variable that will divide all terms and factor it out- divide each term by GCF. Move the GCF to the outside and write in parenthesis what is remaining, after you factor out the GCF.
Factor each of the following polynomials.
If the leading coefficient is negative, always factor out the negative!