Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Final Value Theorem - Linear Dynamic Systems and Signals - Solved Exam, Exams of Electronic Circuits Analysis

Main points are: Final Value Theorem, Time Multiplication Property, Initial Value Theorem, Final Value Theorem, Unit Circle, Step Response, Impulse Response, System Transfer Function, Zero-Input Response

Typology: Exams

2012/2013

Uploaded on 04/16/2013

maalolan
maalolan 🇮🇳

4.5

(8)

123 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Sample Exam 3: Solutions
#1)
 "!#%$'&)(*+-,%#%$'&.'&.+/02134
"567
!89$+&;:
<
,
9$'&.=
>14
"7
!#%$?&
:
@
,
9$+&A
8134
47
!3.$?&)
:
B=
,
81#4
"7
!#%$?&)
:
<0
/8CD
0E!#
(
+=0
0>CD
/ !8
(
@0>1#C
56F7
&
4G.@&AH
B=/81#C
567
&
GI'&
J
H
#+LKDMN8"O!#%$P+LKDMN8"O6%$P8?O8!#%$B/
JQRKDMN8O6#%$B/ KDMN84O86$SNT3U-4O6#%$VNAT3U-"O8"WX!83.$SD
Q KMN84O6X%$PY$PZ)W#!89$BDJ<
H
C
KDMN8O!#DJ@
H
C
G
G
H
BO
H
For the third signal the Laplace transform can be obtained directly from the table as
J/)[/DJ'
\
0
H
NAT]U-4=)A!8
(
\
"GIB
^
"GIB H+_)`
H
#2)
a
4Gb
Gc
8C
G
H
4G.@&
G/G.@&
8C
G
H
4G.@&
a
FG)8
a
H
"G)D/8C
a
4Gbed
G
d
H
G.@&
G
$
GI@&gfih
$S
E4j
!8.' 
a
H
4G.lk
H
G
mk
D
G
H
k
H
GI'&
n$
&
G
&
G
H
&
G.@&gfih
$*&.V2?0E
j
!3.<
H
#
.
h
$P/ 4jL!#8
^
$*&co%$'&.B0>14
47
`!83.$+&.
h
$B0E4j/!#8
^
$JpV2?0>1q4
47
`!89$+&
#3)
Q
d
W>@=/r
5
H
d
+/D!2Q
d
$B;W>@=r0
H
5
H
5
H
d
$Bpp?/D!6Q
d
W8<s&Jtu=r0
H
d
$P!6Q
d
$S)W
'sv&-tu=r0
H
d
$P!6Q
d
$B)Ww+=)xytu=r0
H
!2Q
d
$B;W
f
sv&
=z
4z$B= H
z
H
?=/x
z
z$B=
z{
H
Using the table of the
|
-transform common pairs we have
6Q
d
W><KMN*}
d
O
%~
!6Q
d
W
f
z
H
$Bz.KDMN
hL
H
j
z
H
$Vz.KDMN
h
H
j
'&
z
H
z
H
@&
a
"z
By the time multiplication property we obtain
d
6Q
d
W
f
$Jz%
a
Xz
z
$Jz
zI
z
H
z
H
'&9
$
z
H
"z
H
'&) H
1
Docsity.com
pf3

Partial preview of the text

Download Final Value Theorem - Linear Dynamic Systems and Signals - Solved Exam and more Exams Electronic Circuits Analysis in PDF only on Docsity!

Sample Exam 3: Solutions

#1)      "!# %$'& )(*+-,%# %$'&.'&.+/ 02134 "567^ !8 9$+& ;:

<   ,  9$'&.=  >14^ "7^ !# %$?& : @   , 9$+& A 8134^ ^47 !3 .$?&) : B=   , 81#4^ "7^ !# %$?&) :

<0 /8CD  0E!# ( +=0 0>CD / !8 ( @0>1#C 5 6F7^ &  4G.@& AH

B=/81#C 5 67^ &

G

I'&

J

H

#  +LKDMN8"O  !# %$P  +LKDMN8"O6 %$P 8?O8 !# %$B/ 

JQRKDMN8O6# %$B/  KDMN84O8 6$SNT3U-4O6# %$V  NAT3U-"O8 "WX!83 .$S D

Q KMN84O6X %$P  Y$PZ)W#!8 9$B D J<  HCKDMN8O !# D J@  HC G

G

H

BO H

For the third signal the Laplace transform can be obtained directly from the table as

J/)[/ D J' \ 0 (^) HNAT]U-4=) A!8 ( 

\

"GIB

^"GIB H +_)` H

#2) a

 4G b

Gc 8C GH4G.@&

G/G.@&

8C

GH4G.@&

a   FG) 8

a (^) H"G) D/8C a 4G bed

G

 d H G .@&

G

GI@&gfih

$S E4j !8 .'  a

H 4G .lk

H

G

mk

D

GH

k H G I'&

n$

G

G

H

G

.@&gfih

*&.V 2?0E j!3 .< H

h $P/ 4jL!# 8 ^$*&co %$'&.B0>14 ^47 !83 .$+& . h $B0E4j/!# 8 ^$JpV 2?0>1q4 ^47 !8 9$+&

#3)   Q d

W

@=/r (^5) H d

+/ D!2Q

d $B;W>@=r0 (^) H^5 H^5 H d $Bpp?/ D!6Q d W8<s&Jtu=r0 (^) H d

$P !6Q

d

$S)W

'sv&-tu=r0 (^) H d

$P !6Q

d $B)Ww+=)xytu=r0 (^) H!2Q d

$B;W

f sv& =z 4z$B= H

z  (^) H ?=/x z z $B= z { (^) H

Using the table of the | -transform common pairs we have

6Q (^) dW><KMN*} (^) d

O

6Q (^) dW f

z H

Bz.KDMN h L (^) H j zH $Vz.KDMN h  H

j '&

z H zH @&

a  "z

By the time multiplication property we obtain

d

6Q

d

W

f $Jz%€

a  Xz € z

$Jz‚€ € z Iƒ

z H zH '&9„

z (^) H "z (^) H '&) H

1

/†‡ ˆw‰>ŠŒ‹‚Ž

Ž•”/–D—v˜™Ašp›]œA˜  žyŸ

)†w‡ ˆ‰X ¡ (^)  ¢ £¥¤

ˆw¯ ¢ ¤@ª

¶μ ª

E± ²³6·

n¸ (^) ª  ˆ†JŠ

© ±²³6·^

¢ ¤+« © ±²³6·^

© Š¹μ ª

¤B«

μ ª

Rˆ‰

A¾ ¸ ª

¸J^ ©A¾/¿JÀ ‡ˆw‰

The initial value theorem is always applicable, hence

6‡ “‰>ŠÂÁ › ²Å¥ÆÄà Ÿ

© JŠÂÁ^

²Å*Æ'Ç3Ã

This can be verified from the expression obtained for

2‡Rˆ‰

6‡ “‰>Š¶μ ª

The final value theorem is not applicable in this case since the function

© (^) has poles outside the unit circle.

#5) É

Ê

Ê

Ê

Ì

¨Í

+Î · ®

É

ŠÎ · ®‹ «

Ê

.Ï ŠÎ^ ·

Ê

Ï

½Ð

Ñ ·

DÒ ¸

Í

Ñ

†DÒXÓ

À

ÔÕ Ò#Ö#×^

Ò

Ø

Ì

¨"Ù

Ù

Ò

Ø

Ð

Ñ ·

Û ¸

Ù

Ñ

†Û Ó

Ú

Ù

Ñ

†DÒ

Í

Ñ

†DÒ

À

Another way ti find the step response

Ü ÕÒXÖ×

É

¨"Ê

Ê

Ê

Ê

¤B«

¨4Ê ¯D¯

n¸ (^) ªÝ

Ê

¤ ªÝ^

Ê

¤B«

Ý

¨"Ê

Ñ

Í

Ñ

†DÒ

À

Ü

Õ

¨"Ê

É

¨"Ê

§¨4Ê

Ê

Ê

¤+«^

Ê

¤@ª^

Ð

Ñ

Í

Ñ

†DÒ ¸

Ñ

ÒÓ

À

Ê

¯Ü

²Þ

Ê

Ô

Ð

Ó

Ô

4à ²DÞ

Ð

Ó

¤BË^

Ð

Ê

Ü

²DÞ

Ô

Ð

Ó

’Ü

Ô

Þ

Ð

Ó

Ô

à ²DÞ

Ð

Ó

Ð

Ê

¤+Ë

Ê

Ó

Ü

²Þ

Ê

Ü

²DÞ

Ê

¨4Ê

Ê

¤+«^

Ô

²DÞ

Î · ®

Ü

ŠáÐ Ñ

· Ò

B«Ñ ·

DÒXÓ

À

2