Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Factoring Polynomials: Techniques and Examples, Lecture notes of Algebra

A step-by-step guide on factoring polynomials, including techniques for common monomial factors, binomials, and trinomials. It includes examples and practice problems for students to apply their knowledge.

What you will learn

  • How do you factor a trinomial?
  • How do you find the greatest common factor (GCF) of two polynomials?
  • What are the different techniques for factoring binomials?

Typology: Lecture notes

2021/2022

Uploaded on 08/05/2022

hal_s95
hal_s95 🇵🇭

4.4

(652)

10K documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
FACTORING POLYNOMIALS
1) First determine if a common monomial factor (Greatest Common Factor) exists. Factor trees may be used to find the
GCF of difficult numbers. Be aware of opposites: Ex. (a-b) and (b-a) These may become the same by factoring -1
from one of them. 3 12 3 4
3

3
6 6
2) If the problem to be factored is a binomial, see if it fits one of the following situations.
A. Difference of two squares:

9
25
3 53 5
25 5 5 5 5
B. Sum of two squares:
does not factor (it is prime).
C. Sum of two cubes:


8
27
2 34
6 9
Note: Resulting trinomial does not factor.
D. Difference of two cubes:


64 4
4 16
Note: Resulting trinomial does not factor.
E. If none of these occur, the binomial does not factor.
3) If the problem is a trinomial, check for one of the following possibilities.
A. Square of a binomial:
2

6 9 3 3 3
4
20 25
2 5
B. If 1, use reverse foil or trial and error method:
7 12 3 4
7 12 3 4
3 18 6 3
3 18 6 3
C. If 1, use trial and error method. (Grouping may also be used.)
4) If factoring a polynomial with four terms, possible choices are below.
A. Group first two terms together and last two terms together.
5 5   5 5  5 5
3
2 6
3
2 6
3 2 3 3
2
B. Group first three terms together.
6 9
6 9
3
3  3 3  3
C. Group last three terms together.
6 9
6 9
3
3 3 3 3
BE SURE YOUR ANSWERS WILL NOT FACTOR FURTHER!
All answers may be checked by multiplication.
pf3
pf4
pf5

Partial preview of the text

Download Factoring Polynomials: Techniques and Examples and more Lecture notes Algebra in PDF only on Docsity!

FACTORING POLYNOMIALS

  1. First determine if a common monomial factor (Greatest Common Factor) exists. Factor trees may be used to find the GCF of difficult numbers. Be aware of opposites: Ex. (a-b) and (b-a) These may become the same by factoring - from one of them. 3ᡶ ㎘ 12 㐄 3䙦ᡶ ㎘ 4䙧 ᡶ⡰ᡷ⡰^ ㎘ 3ᡶᡷ⡰^ 㐄 ᡶᡷ⡰䙦ᡶ ㎘ 3䙧 6䙦ᡶ ㎘ ᡷ䙧 ㎗ ᡓ䙦ᡶ ㎘ ᡷ䙧 㐄 䙦ᡶ ㎘ ᡷ䙧䙦6 ㎗ ᡓ䙧
  2. If the problem to be factored is a binomial, see if it fits one of the following situations. A. Difference of two squares: ᡓ⡰^ ㎘ ᡔ⡰^ 㐄 䙦ᡓ ㎗ ᡔ䙧䙦ᡓ ㎘ ᡔ䙧 9ᡶ⡰^ ㎘ 25ᡷ⡰^ 㐄 䙦3ᡶ ㎗ 5ᡷ䙧䙦3ᡶ ㎘ 5ᡷ䙧 䙦ᡓ ㎗ ᡔ䙧⡰^ ㎘ 25 㐄 䙰䙦ᡓ ㎗ ᡔ䙧 ㎗ 5䙱䙰䙦ᡓ ㎗ ᡔ䙧 ㎘ 5䙱 㐄 䙦ᡓ ㎗ ᡔ ㎗ 5䙧䙦ᡓ ㎗ ᡔ ㎘ 5䙧 B. Sum of two squares: ᡓ⡰^ ㎗ ᡔ⡰^ does not factor (it is prime). C. Sum of two cubes: ᡓ⡱^ ㎗ ᡔ⡱^ 㐄 䙦ᡓ ㎗ ᡔ䙧䙦ᡓ⡰^ ㎘ ᡓᡔ ㎗ ᡔ⡰䙧 8ᡶ⡱^ ㎗ 27ᡷ⡱^ 㐄 䙦2ᡶ ㎗ 3ᡷ䙧䙦4ᡶ⡰^ ㎘ 6ᡶᡷ ㎗ 9ᡷ⡰䙧 Note: Resulting trinomial does not factor. D. Difference of two cubes: ᡓ⡱^ ㎘ ᡔ⡱^ 㐄 䙦ᡓ ㎘ ᡔ䙧䙦ᡓ⡰^ ㎗ ᡓᡔ ㎗ ᡔ⡰䙧 ᡶ⡱^ ㎘ 64 㐄 䙦ᡶ ㎘ 4䙧䙦ᡶ⡰^ ㎗ 4ᡶ ㎗ 16䙧 Note: Resulting trinomial does not factor. E. If none of these occur, the binomial does not factor.
  3. If the problem is a trinomial, check for one of the following possibilities. A. Square of a binomial: ᡓ⡰^ ㎗ 2ᡓᡔ ㎗ ᡔ⡰^ 㐄 䙦ᡓ ㎗ ᡔ䙧䙦ᡓ ㎗ ᡔ䙧 㐄 䙦ᡓ ㎗ ᡔ䙧⡰ ᡶ⡰^ ㎗ 6ᡶ ㎗ 9 㐄 䙦ᡶ ㎗ 3䙧䙦ᡶ ㎗ 3䙧 㐄 䙦ᡶ ㎗ 3䙧⡰ 4ᡶ⡰^ ㎘ 20ᡶᡷ ㎗ 25ᡷ⡰^ 㐄 䙦2ᡶ ㎘ 5ᡷ䙧⡰ B. If ᡓ 㐄 1, use reverse foil or trial and error method: ᡶ⡰^ ㎗ 7ᡶ ㎗ 12 㐄 䙦ᡶ ㎗ 3䙧䙦ᡶ ㎗ 4䙧 ᡶ⡰^ ㎘ 7ᡶ ㎗ 12 㐄 䙦ᡶ ㎘ 3䙧䙦ᡶ ㎘ 4䙧 ᡶ⡰^ ㎗ 3ᡶ ㎘ 18 㐄 䙦ᡶ ㎗ 6䙧䙦ᡶ ㎘ 3䙧 ᡶ⡰^ ㎘ 3ᡶ ㎘ 18 㐄 䙦ᡶ ㎘ 6䙧䙦ᡶ ㎗ 3䙧 C. If ᡓ 㐅 1, use trial and error method. (Grouping may also be used.)
  4. If factoring a polynomial with four terms, possible choices are below. A. Group first two terms together and last two terms together. 5ᡓ ㎘ 5ᡔ ㎘ ᡶᡓ ㎗ ᡶᡔ 㐄 䙦5ᡓ ㎘ 5ᡔ䙧 ㎗ 䙦㎘ᡶᡓ ㎗ ᡶᡔ䙧 㐄 5䙦ᡓ ㎘ ᡔ䙧 ㎘ ᡶ䙦ᡓ ㎘ ᡔ䙧 㐄 䙦ᡓ ㎘ ᡔ䙧䙦5 ㎘ ᡶ䙧 ᡶ⡱^ ㎘ 3ᡶ⡰^ ㎗ 2ᡶ ㎘ 6 㐄 䙦ᡶ⡱^ ㎘ 3ᡶ⡰䙧 ㎗ 䙦2ᡶ ㎘ 6䙧 㐄 ᡶ⡰䙦ᡶ ㎘ 3䙧 ㎗ 2䙦ᡶ ㎘ 3䙧 㐄 䙦ᡶ ㎘ 3䙧䙦ᡶ⡰^ ㎗ 2䙧 B. Group first three terms together. ᡶ⡰^ ㎗ 6ᡶ ㎗ 9 ㎘ ᡷ⡰^ 㐄 䙦ᡶ⡰^ ㎗ 6ᡶ ㎗ 9䙧 ㎘ ᡷ⡰^ 㐄 䙦ᡶ ㎗ 3䙧⡰^ ㎘ ᡷ⡰^ 㐄 䙰䙦ᡶ ㎗ 3䙧 ㎗ ᡷ䙱䙰䙦ᡶ ㎗ 3䙧 ㎘ ᡷ䙱 㐄 䙦ᡶ ㎗ 3 ㎗ ᡷ䙧䙦ᡶ ㎗ 3 ㎘ ᡷ䙧 C. Group last three terms together. ᡷ⡰^ ㎘ ᡶ⡰^ ㎗ 6ᡶ ㎘ 9 㐄 ᡷ⡰^ ㎘ 䙦ᡶ⡰^ ㎘ 6ᡶ ㎗ 9䙧 㐄 ᡷ⡰^ ㎘ 䙦ᡶ ㎘ 3䙧⡰^ 㐄 䙰ᡷ ㎗ 䙦ᡶ ㎘ 3䙧䙱䙰ᡷ ㎘ 䙦ᡶ ㎘ 3䙧䙱 㐄 䙦ᡷ ㎗ ᡶ ㎘ 3䙧䙦ᡷ ㎘ ᡶ ㎗ 3䙧 BE SURE YOUR ANSWERS WILL NOT FACTOR FURTHER! All answers may be checked by multiplication.

PRACTICE PROBLEMS:

1. ᡷ⡱^ ㎗ 9ᡷ⡰

2. 5ᡶ⡰ᡷ⡱^ ㎗ 15ᡶ⡱ᡷ⡰

3. 12ᡲ⡳^ ㎘ 20ᡲ⡲^ ㎗ 8ᡲ⡰^ ㎘ 16

4. ᡨ⡰^ ㎘ 36

6. 4ᡓ⡱^ ㎘ 49ᡓ

7. 䙦ᡓ ㎗ ᡔ䙧⡰^ ㎘ 100

9. ᡷ⡱^ ㎗ 8

10. 64ᡷ⡲^ ㎗ ᡷ

11. ᡶ⡱^ ㎘ 27

12. 5ᡶ⡱^ ㎘ 40ᡷ⡱

13. 2ᡷ⡲^ ㎘ 128ᡷ

14. ᡲ⡴^ ㎘ 64

15. ᡶ⡰^ ㎘ 10ᡶ ㎗ 25

16. 4ᡓ⡰^ ㎗ 16ᡓ ㎗ 16

17. 16ᡷ⡰^ ㎗ 56ᡷ ㎗ 49

18. ㎘20ᡶᡷ ㎗ 4ᡷ⡰^ ㎗ 25ᡶ⡰

19. ᡶ⡰^ ㎗ 9ᡶ ㎗ 20

20. 2ᡷ⡰^ ㎘ 16ᡷ ㎗ 32

21. 3ᡶ ㎗ ᡶ⡰^ ㎘ 10

22. ᡷ⡰^ ㎗ 5ᡷ ㎘ 84

23. 8ᡶ⡰^ ㎘ 16 ㎘ 28ᡶ

24. 12ᡶ⡱^ ㎘ 31ᡶ⡰^ ㎗ 20ᡶ

25. 6ᡓ⡰^ ㎘ 7ᡓ ㎘ 10

27. 6ᡶ⡴^ ㎗ ᡶ⡱^ ㎘ 2

28. 2ᡶ⡶^ ㎘ 14ᡶ⡲^ ㎗ 20

29. ᡷ⡱^ ㎘ ᡷ⡰^ ㎗ 2ᡷ ㎘ 2

30. ᡶ⡲^ ㎘ ᡶ⡱^ ㎘ ᡶ ㎗ ᡶ⡰

31. ᡶ⡱^ ㎗ 8ᡶ⡰^ ㎘ ᡶ ㎘ 8

32. ᡨ⡰ᡩ ㎘ 25ᡩ ㎗ 3ᡨ⡰^ ㎘ 75

33. 16 ㎘ ᡶ⡰^ ㎗ 2ᡶᡷ ㎘ ᡷ⡰

35. 6ᡶ⡰^ ㎗ 23ᡶ ㎗ 20

36. 9ᡶ⡰^ ㎗ 15ᡶ ㎗ 4

37. 8ᡥ⡰^ ㎘ 6ᡥ ㎘ 9

40. ᡓᡷ ㎘ ᡷᡶ ㎘ ᡶ⡰^ ㎗ ᡓᡶ

ANSWERS:

1. ᡷ⡰䙦ᡷ ㎗ 9䙧^ 2. 5ᡶ⡰ᡷ⡰䙦ᡷ ㎗ 3ᡶ䙧^ 3. 4䙦3ᡲ⡳^ ㎘ 5ᡲ⡲^ ㎗ 2ᡲ⡰^ ㎘ 4䙧^ 4. 䙦ᡨ ㎗ 6䙧䙦ᡨ ㎘ 6䙧

5. 䙦5 ㎗ ᡶ䙧䙦5 ㎘ ᡶ䙧^ 6. ᡓ䙦2ᡓ ㎗ 7䙧䙦2ᡓ ㎘ 7䙧^ 7. 䙦ᡓ ㎗ ᡔ ㎗ 10䙧䙦ᡓ ㎗ ᡔ ㎘ 10䙧

8. 䙦3 ㎗ ᡶ ㎘ ᡷ䙧䙦3 ㎘ ᡶ ㎗ ᡷ䙧^ 9. 䙦ᡷ ㎗ 2䙧䙦ᡷ⡰^ ㎘ 2ᡷ ㎗ 4䙧^ 10. ᡷ䙦4ᡷ ㎗ 1䙧䙦16ᡷ⡰^ ㎘ 4ᡷ ㎗ 1䙧

11. 䙦ᡶ ㎘ 3䙧䙦ᡶ⡰^ ㎗ 3ᡶ ㎗ 9䙧 12. 5䙦ᡶ ㎘ 2ᡷ䙧䙦ᡶ⡰^ ㎗ 2ᡶᡷ ㎗ 4ᡷ⡰䙧 13. 2ᡷ䙦ᡷ ㎘ 4䙧䙦ᡷ⡰^ ㎗ 4ᡷ ㎗ 16䙧

14. 䙦ᡲ ㎗ 2䙧䙦ᡲ⡰^ ㎘ 2ᡲ ㎗ 4䙧䙦ᡲ ㎘ 2䙧䙦ᡲ⡰^ ㎗ 2ᡲ ㎗ 4䙧 15. 䙦ᡶ ㎘ 5䙧⡰^ 16. 4䙦ᡓ ㎗ 2䙧⡰^ 17. 䙦4ᡷ ㎗ 7䙧⡰

18. 䙦5ᡶ ㎘ 2ᡷ䙧⡰^ 19. 䙦ᡶ ㎗ 5䙧䙦ᡶ ㎗ 4䙧 20. 2䙦ᡷ ㎘ 4䙧⡰^ 21. 䙦ᡶ ㎗ 5䙧䙦ᡶ ㎘ 2䙧 22. 䙦ᡷ ㎗ 12䙧䙦ᡷ ㎘ 7䙧

23. 4䙦2ᡶ ㎗ 1䙧䙦ᡶ ㎘ 4䙧^ 24. ᡶ䙦4ᡶ ㎘ 5䙧䙦3ᡶ ㎘ 4䙧^ 25. 䙦ᡓ ㎘ 2䙧䙦6ᡓ ㎗ 5䙧^ 26. 䙦4 ㎗ 3ᡶ䙧䙦2 ㎘ 3ᡶ䙧

27. 䙦3ᡶ⡱^ ㎗ 2䙧䙦2ᡶ⡱^ ㎘ 1䙧^ 28. 2䙦ᡶ⡲^ ㎘ 5䙧䙦ᡶ⡲^ ㎘ 2䙧^ 29. 䙦ᡷ ㎘ 1䙧䙦ᡷ⡰^ ㎗ 2䙧^ 30. ᡶ䙦ᡶ⡰^ ㎗ 1䙧䙦ᡶ ㎘ 1䙧

31. 䙦ᡶ ㎗ 8䙧䙦ᡶ ㎗ 1䙧䙦ᡶ ㎘ 1䙧^ 32. 䙦ᡩ ㎗ 3䙧䙦ᡨ ㎗ 5䙧䙦ᡨ ㎘ 5䙧^ 33. 䙦4 ㎗ ᡶ ㎘ ᡷ䙧䙦4 ㎘ ᡶ ㎗ ᡷ䙧

  1. 䙦5 ㎘ ᡶ䙧⡰^ or 䙦ᡶ ㎘ 5䙧⡰^ 39. 䙦4 ㎗ ᡵ⡰䙧䙦2 ㎗ ᡵ䙧䙦2 ㎘ ᡵ䙧 40. 䙦ᡷ ㎗ ᡶ䙧䙦ᡓ ㎘ ᡶ䙧

MORE PRACTICE PROBLEMS:

81. 125ᡶ⡱^ ㎘ 1

82. ᡵ⡰^ ㎘ 64

83. ᡷ⡰^ ㎘ 12ᡷ ㎗ 36

84. ᡶ⡰^ ㎘ 8ᡶ ㎘ 48

85. ᡓ⡱^ ㎘ 7ᡓ⡰^ ㎗ 12ᡓ

86. 25ᡓ⡰^ ㎗ 8ᡔ⡰

88. 6ᡶ⡰^ ㎗ 12ᡶ ㎗ 6

89. ᡷ⡰^ ㎘ 11ᡷ ㎗ 18

91. 3ᡶ⡳^ ㎘ 12ᡶ⡰

92. 250ᡶ⡱^ ㎗ 2

93. 7ᡶᡷ⡲^ ㎘ 7ᡶᡸ⡲

94. 2ᡷ⡲^ ㎗ 5ᡷ⡱^ ㎘ 12ᡷ⡰

95. 24ᡶ⡰^ ㎘ 7ᡶ ㎘ 5

96. ᡷ⡰^ ㎗ 14ᡷ ㎘ 32

97. 0.04ᡵ⡰^ ㎗ 0.28ᡵ ㎗ 0.

98. 4ᡶ⡱^ ㎗ 40ᡶ⡰^ ㎗ 64ᡶ

99. 64ᡷ⡱^ ㎗ 27

⡩ ⡶⡩

101. 5ᡶ⡰^ ㎘ 2ᡶ ㎗ 3

102. ᡶ⡱^ ㎘ 343

103. 40ᡷ⡰^ ㎗ 28ᡷ ㎘ 48

105. 8ᡕ⡴^ ㎘ 125ᡖ⡴

107. ᡶ⡲^ ㎗ 10ᡶ⡱^ ㎗ 25ᡶ⡰

109. ᡷ⡰^ ㎗ 5ᡷ ㎘ 36

110. ᡶ⡰^ ㎘ 11ᡶ ㎘ 42

111. 7ᡓ⡰^ ㎘ 7ᡔ⡰

114. ᡔ⡰^ ㎘ 5ᡔ ㎘ 14

115. ᡩ⡲^ ㎘ 10ᡩ⡱^ ㎗ 21ᡩ⡰

116. 9ᡶ⡰ᡷ⡰^ ㎘ 25ᡷ⡲

118. ᡶ⡰^ ㎘ 3ᡶ ㎘ 2

119. 6ᡷ⡱^ ㎗ 48

120. ᡓ⡱^ ㎘ 14ᡓ⡰^ ㎗ 49ᡓ

ANSWERS:

81. 䙦5ᡶ ㎘ 1䙧䙦25ᡶ⡰^ ㎗ 5ᡶ ㎗ 1䙧 82. 䙦ᡵ ㎗ 8䙧䙦ᡵ ㎘ 8䙧 83. 䙦ᡷ ㎘ 6䙧⡰^ 84. 䙦ᡶ ㎘ 12䙧䙦ᡶ ㎗ 4䙧

  1. ᡓ䙦ᡓ ㎘ 4䙧䙦ᡓ ㎘ 3䙧 86. ᡂᡰᡡᡥᡗ 䙦ᠩᡓᡦᡦᡧᡲ ᡔᡗ ᡘᡓᡕᡲᡧᡰᡗᡖ䙧 87. 䙦ᡶ ㎘ 3䙧䙦2ᡶ ㎗ 3䙧
  2. 6䙦ᡶ ㎗ 1䙧⡰^ 89. 䙦ᡷ ㎘ 9䙧䙦ᡷ ㎘ 2䙧 90. 䙦8 ㎘ ᡔ䙧䙦5 ㎗ ᡔ䙧 91. 3ᡶ⡰䙦ᡶ⡱^ ㎘ 4䙧
  3. 2䙦5ᡶ ㎗ 1䙧䙦25ᡶ⡰^ ㎘ 5ᡶ ㎗ 1䙧 93. 7ᡶ䙦ᡷ⡰^ ㎗ ᡸ⡰䙧䙦ᡷ ㎗ ᡸ䙧䙦ᡷ ㎘ ᡸ䙧 94. ᡷ⡰䙦2ᡷ ㎘ 3䙧䙦ᡷ ㎗ 4䙧
  4. 䙦8ᡶ ㎘ 5䙧䙦3ᡶ ㎗ 1䙧 96. 䙦ᡷ ㎘ 2䙧䙦ᡷ ㎗ 16䙧 97. 䙦0.2ᡵ ㎗ 0.7䙧⡰^ 98. 4ᡶ䙦ᡶ ㎗ 2䙧䙦ᡶ ㎗ 8䙧
  5. 䙦4ᡷ ㎗ 3䙧䙦16ᡷ⡰^ ㎘ 12ᡷ ㎗ 9䙧 100. 䙲 ⡩ ⡷ ㎗ ᡶ䙳 䙲 ⡩ ⡷ ㎘ ᡶ䙳^ 101.^ ᡂᡰᡡᡥᡗ 䙦ᠩᡓᡦᡦᡧᡲ ᡔᡗ ᡘᡓᡕᡲᡧᡰᡗᡖ䙧^ 102. 䙦ᡶ ㎘ 7䙧䙦ᡶ⡰^ ㎗ 7ᡶ ㎗ 49䙧 103. 4䙦2ᡷ ㎗ 3䙧䙦5ᡷ ㎘ 4䙧 104. ᡔ䙦3ᡓ ㎘ 5ᡕ ㎗ ᡖ䙧
  6. 䙦2ᡕ⡰^ ㎘ 5ᡖ⡰䙧䙦4ᡕ⡲^ ㎗ 10ᡕ⡰ᡖ⡰^ ㎗ 25ᡖ⡲䙧 106. 䙦9 ㎘ ᡸ䙧⡰^ 107. ᡶ⡰䙦ᡶ ㎗ 5䙧⡰
  7. 䙦ᡶ ㎘ ᡷ䙧䙦ᡸ ㎘ ᡵ䙧 109. 䙦ᡷ ㎘ 4䙧䙦ᡷ ㎗ 9䙧 110. 䙦ᡶ ㎘ 14䙧䙦ᡶ ㎗ 3䙧 111. 7䙦ᡓ ㎗ ᡔ䙧䙦ᡓ ㎘ ᡔ䙧
  8. 䙦6 ㎘ ᡓ䙧䙦36 ㎗ 6ᡓ ㎗ ᡓ⡰䙧 113. 䙦9 ㎗ ᡷ䙧⡰^ 114. 䙦ᡔ ㎘ 7䙧䙦ᡔ ㎗ 2䙧 115. ᡩ⡰䙦ᡩ ㎘ 3䙧䙦ᡩ ㎘ 7䙧 116. ᡷ⡰䙦3ᡶ ㎗ 5ᡷ䙧䙦3ᡶ ㎘ 5ᡷ䙧 117. 䙦7 ㎗ ᡶ䙧䙦15 ㎘ ᡶ䙧 118. ᡂᡰᡡᡥᡗ 䙦ᠩᡓᡦᡦᡧᡲ ᡔᡗ ᡘᡓᡕᡲᡧᡰᡗᡖ䙧
  9. 6䙦ᡷ ㎗ 2䙧䙦ᡷ⡰^ ㎘ 2ᡷ ㎗ 4䙧^ 120. ᡓ䙦ᡓ ㎘ 7䙧⡰

121. 3ᡷ⡰^ ㎘ 34ᡷ ㎘ 24

122. ᡓ⡰^ ㎗ 8ᡓ ㎗ 16

123. ᡷ⡰^ ㎘ 121

125. 9ᡶ⡱^ ㎘ 24ᡶ⡰^ ㎗ 16ᡶ

126. ᡶ⡱^ ㎘

⡩ ⡶

  1. 10ᡵ⡰^ ㎗ 29ᡵ ㎘ 21
  2. 16ᡶ⡰^ ㎗ 54ᡶ ㎘ 7
  3. 27ᡶ⡰^ ㎘ 30ᡶ ㎘ 8
  4. ᡶ⡴^ ㎘ 1

131. ᡶ⡰^ ㎘ 0.6ᡶ ㎗ 0.

132. 4ᡶ⡰^ ㎘ 13ᡶ ㎘ 35

133. 125ᡶ⡴^ ㎘ 81

134. 49ᡶ⡱^ ㎘ 14ᡶ⡰^ ㎗ ᡶ

135. 40ᡷ⡰^ ㎗ 7ᡷ ㎘ 3

136. 15ᡵ⡰^ ㎘ 15ᡵ ㎘ 90

137. 0.04ᡓ⡰^ ㎘ 0.49ᡔ⡰

138. ᡶ⡱ᡷ⡰^ ㎗ 7ᡶ⡰ᡷ⡰^ ㎘ 18ᡶᡷ⡰

139. 2ᡶ⡴^ ㎘ 54ᡷ⡴

⡩ ⡲

ᡶ⡰^ ㎘ 5ᡶ ㎗ 25

ANSWERS:

  1. 䙦ᡷ ㎘ 12䙧䙦3ᡷ ㎗ 2䙧 122. 䙦ᡓ ㎗ 4䙧⡰
  2. 䙦ᡷ ㎗ 11䙧䙦ᡷ ㎘ 11䙧^ 124. 䙦7 ㎘ ᡓ䙧䙦6 ㎗ ᡓ䙧^ 125. ᡶ䙦3ᡶ ㎘ 4䙧⡰^ 126. 䙲ᡶ ㎘ ⡩ ⡰䙳 䙲ᡶ ⡰ (^) ㎗ ⡩ ⡰ ᡶ ㎗^ ⡩ ⡲䙳
  3. 䙦5ᡵ ㎘ 3䙧䙦2ᡵ ㎗ 7䙧 128. 䙦2ᡶ ㎗ 7䙧䙦8ᡶ ㎘ 1䙧 129. 䙦9ᡶ ㎗ 2䙧䙦3ᡶ ㎘ 4䙧
  4. 䙦ᡶ ㎗ 1䙧䙦ᡶ ㎘ 1䙧䙦ᡶ⡰^ ㎘ ᡶ ㎗ 1䙧䙦ᡶ⡰^ ㎗ ᡶ ㎗ 1䙧 131. 䙦ᡶ ㎘ 0.3䙧⡰^ 132. 䙦ᡶ ㎘ 5䙧䙦4ᡶ ㎗ 7䙧
  5. ᡂᡰᡡᡥᡗ 䙦ᠩᡓᡦᡦᡧᡲ ᡔᡗ ᡘᡓᡕᡲᡧᡰᡗᡖ䙧 134. ᡶ䙦7ᡶ ㎘ 1䙧⡰^ 135. 䙦8ᡷ ㎗ 3䙧䙦5ᡷ ㎘ 1䙧
  6. 15䙦ᡵ ㎗ 2䙧䙦ᡵ ㎘ 3䙧 137. 䙦0.2ᡓ ㎗ 0.7ᡔ䙧䙦0.2ᡓ ㎘ 0.7ᡔ䙧 138. ᡶᡷ⡰䙦ᡶ ㎘ 2䙧䙦ᡶ ㎗ 9䙧
  7. 2䙦ᡶ⡰^ ㎘ 3ᡷ⡰䙧䙦ᡶ⡲^ ㎗ 3ᡶ⡰ᡷ⡰^ ㎗ 9ᡷ⡲䙧^ 140. 䙲 ⡩ ⡰ ᡶ ㎘ 5䙳 ⡰