






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A series of physics problems related to the motion of rigid bodies, including rolling without slipping, collisions, and friction. The problems involve calculating velocities, accelerations, moments of inertia, and forces, using principles of conservation of energy and linear and angular momentum. The problems are solved using equations of motion, including the equations of translational and rotational kinematics, and the work-energy theorem.
Typology: Lecture notes
1 / 10
This page cannot be seen from the preview
Don't miss anything!
EMR R = (^2) , 5 CM = (^8) , 5 x10 M
Balok M =^0 , 6 kg ditanya : Kecepatan balok^ setelah^ balok^ turun sejanh 82 cm^? EK. (^) Balok EKrof Bola^ Ek (^) rot katrol
I M +^ I. ,E (^) /^ E = EMP*
Ekrot =^22 [ - M + - M + Frat EKtof :^ Epalok^ =^ Mgh mgh =^ v " ) m^ + 5 M^ + Fr) omgM^ + or =^0.^6.^9 ,^8.^0.^82 510 ,^ 6)^ + 5 14 , (^) 5) + 3x10s (^) or
konfigurasi pada^ gambar,^ massa^ m turn (^) sejanh (^) y dalam waktu t^ , berapa besar^ torsi^ gesekan^ antara^ paros dengan^ silinder^ berongga^? Pengelesaian : Jari-jari silinder^ pejal :^ R/^
(^) I = <MR - > (^) Poros
p- R W · (^) Benda m (^) · Persamaan (^) gerak benda (^) m yang tergantung WY = Voy t^ +^ tayt it IF = M. Cy · y-Yo : Voy ·^ t^ +^ jayt V^ T-W^ = (^) M. Ay W
tay'
dy :-^
= my + M d t (^2) T = Mg-M · (^) Momen Inersia Silinder
= ] = [M(R
[ (^) M(RY)
· Torsi gesekan antara^ poros of slinder^ berongga If^. I (^) T =^ I.^ X (^) If = (mg + M 2Y)R
T. R-If =^ I^ < If = R 4 m 18
=Y)
O MER
If =^ TR-I . X = (mg - 2y)( RK + M/2) - MR2 ) Ase = (mg - 12 y) (R + B2) - MR*
b. (^) Kecepatan pusat massa (^) tiang saat (^) tiang menyentuh (^) permukaan tanah (^) (pakailah hukum kekekalan^ energi mekanik)
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)III Penyelesaian : Dik :^1 =^10 M^ Bit^ a)^.^ Jarak^ pusat massa^ tha^ tanah^? m =^200 kg b)^ · Kecepatan tang saat^ menyentah fanah? I = T M 2 a). Asumsikan^ tiang memiliki^ ketebalan^ yg tipis dan (^) bersitat homogen (^) sehingga (^) pusat massanya dapat (^) ditinjau berdasarkan
-(10) = 5 meter Cadi (^) Sarah Pasat massa^ tang adalah^ Em^ dari^ Permakaantanah^ ,^
EK 1 +^ Ep. = (^) Eke +^ EPz · Dengan (^) persamaan (1) kita (^) dapat mencari nilai V
Mg() = E IW M 9 1 =^1 N2^ .....^ (1)^ g
ML . (EV) " · Dengan dalil sumbu (^) sejajar 91 = 5 * 422 12 I = Icom +^ MR^ / =
I = 5 ML2 (^4) · W = =^3.^9 ,^8.^10
Y
W =^ 2v L v = 07 My
Bola (^) pejal A (^) /Ix = C/MRY dan (^) silinder (^) pejal B(IB = %MR2) memiliki massa dan (^) jari-jari sama (^) yaitu M :^0 , (^5) kg and
a. Gambarkan (^) gaya-gaya (^) yang bekerja (^) pada bola dan silinder. 1 R b. (^) Hitunglah (^) percepatan translasi (^) masing-masing benda (^).
v^ t Penyelesaian :
a) Gaya-gayayang
Y (^) · mg co".imin mig
Apr .
ma sin (^) o -I . dpm =^
ngsino-**^ Upm (^) = (^) Mapm
gsino = apm/
E apm = Egsin
. sin (^136) , (^07) A (^) pm =^4 , 2 M/s^2 -^ - · Percepatan traslaci^ pd^ slinder^ pejal mysino - I Apm = (^) Make a gsino -( **) m
grin +^ = apm/ ++ 5) Apm = &Gain t = =9,^0 sin (^) (36, 87) = (^3) , 92 M 2
yang sama,^ dan^ memiliki^ kecepatan^ awal^ yang sama^ maka^ kedua^ benda^ tsb^ akan^ tiba^ pada casar (^) bidang (^) miring pd) waktu
Vo, (^) pm =^0 ,^5 m/s^ b)^ Apm ...?
fg =^ f k^ e)^ OX^ ...?
Penyelesaian : a)
. R - > - W -^ > Perputar search jarum (^) jam = - W((IX (0-2)
b). - f = M^ Apon
I (^)! Upm =^5 , (^00) M/s = - (^0) , 21.^9 , 8. 5
Upm =^ Vokm^ +^ ( - Mx8) t^ W = (^) Xt IWfR =^0.^5 - Mngt x. t.^ R^ = (^8) , 5 - (^) Mngt
e).^ OX^ = Nopm ·^ t^ + &Apmt = (^8). 5.^1 , 66 -
Diatas (^) suatu (^) papan bermassa m (^) , diletakkan sebuah (^) bola (^) homogen bermassa (^) M2. Papan diletaklan (^) pada lantai licin dan (^) mendapat gaya mendatar (^) konstan (^) F. Berapa (^) percepatan (^) papan (^) agar tidal (^) slip? · (^) r
Penyelesaian :
C > F
IF =^ M^ , A^ ,
· (^) Gerak (^) translasi bola · (^) Bola tidah akan (^) tergelincir jika percepatan^ pusat^ massa^ bola^ terhadap papan sama^ dengan^ percepatan tangensial bola^92 yahni Ar. IF =^ M2Az f =^ Mad^ ....^ (2)^ ac-1,^ =^ - Xr
· Gerak^ rotasi^ bola T =^ 1.^ X f.^ r^ = Emr" <.....^ (4) subs. Pers 2 he (^) pers! F-M2d2 =^ M (^) , A (^) ,
M
fr = Emer ? L fr : EMr)9a fr = =McNa,^ - MrAc
E Maya,
Sebnah (^) bola (^) pejal dengan (^) jari-jari r = (^0) ,2 m (^) menggelinding di sebuah lintasan berbentul (^) busur (^) lingkaran berjari-jari 2 =^0 ,^ 5 m.^ Untul^ semua^ pernyataan di^ bawah^ ini^ uhuran^ bola^ tidah^ boleh^ diabailan.^ Momen^ inersia bola (^) pejal = Emr2 dengan m massa bola.
b. (^) Berapa hali bola (^) berputar (^) pada sumbunya ketika (^) menggelinding dari A he (^) B?
mgR-mgr = YIN2 + (^) I'm mg (R-r)^ = 5 Emr2.+ (^) Mr myg (R-r)^ = Em +^ t g(R
r) = (5 +
To v =
v =^2
b) ·^ Lintasan^ yg alan^ ditempul bola di Untasan^ AB s = )Keliling Lingkaran^ ( = I2TR =^ MR
=^0.^
2 πr 2 /r (^2 0) , 2 I T I^