Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Math 12 Exam 2: Inequalities, Quadratic Sketching, Zeros, Exams of Algebra

Practice problems for exam 2 of math 12, focusing on solving inequalities using graphs, sketching quadratic functions and labeling their vertices, intercepts, and x-intercepts, simplifying difference quotients, finding the domain of a function, and evaluating functions. Additionally, it covers finding the domain of a composite function, evaluating functions at given values, finding the domain of a rational function, and using synthetic division and the remainder theorem.

Typology: Exams

Pre 2010

Uploaded on 07/30/2009

koofers-user-q8i
koofers-user-q8i ๐Ÿ‡บ๐Ÿ‡ธ

10 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
MATH 12
PRACTICE PROBLEMS
EXAM 2
1. The graph of 3
4
x
yx
+
=+
2
and the graph of the vertical line 4
x
=โˆ’ are
shown below. Use this graph to solve the inequality 32
0
4
x
x
+
โ‰ค
+.
2. Sketch the graph of the quadratic function 26yx x5
=
โˆ’+ โˆ’. Label the
vertex, the y-intercept, and the x-intercepts.
3. Simplify the difference quotient, ()(fx h fx
h
)
+
โˆ’, for the function
.
2
() 5fx x x=+
4. Find the domain of the function 2
45
() 3172
x
fx xx
8
+
=
โˆ’
โˆ’.
5. a. Let
()fx x= and () 3gx x
=
โˆ’. Find
(
(
fgxD and determine the
domain of
(
(
fgxD.
b. Let 2
() 3
fx x
=โˆ’ and 1
() 2
gx x
=
โˆ’
. Find
(
)
()gf xD and the domain
of
(
.
)
()gf xD
pf3
pf4

Partial preview of the text

Download Math 12 Exam 2: Inequalities, Quadratic Sketching, Zeros and more Exams Algebra in PDF only on Docsity!

MATH 12

PRACTICE PROBLEMS

EXAM 2

  1. The graph of

x y x

and the graph of the vertical line x = โˆ’ 4 are

shown below. Use this graph to solve the inequality

x

x

  1. Sketch the graph of the quadratic function

2 y = โˆ’ x + 6 x โˆ’ 5. Label the

vertex, the y-intercept, and the x-intercepts.

  1. Simplify the difference quotient,

f x ( h ) f x (

h

, for the function

2 f x ( ) = x + 5 x

  1. Find the domain of the function 2

x f x x x 8

5. a. Let f x ( )= x and g x ( ) = x โˆ’ 3. Find ( f D g )( x ) and determine the

domain of ( f D g )( x ).

b. Let

f x x

and

g x x

. Find ( g D f )( x ) and the domain

of ( g D f )( x ).

  1. For , evaluate each of the following:

3 2 f x ( ) = 2 x โˆ’ 4 x + 3 x

a. f (2 )

b. f ( โˆ’1)

c. f (2 x )

  1. Find the domain of the function

f x x

5 3 ( ) 2 3 4

x P x = โˆ’ x + x โˆ’

4 2 Q x ( ) = 12 x โˆ’ 5 x + 1

3 2 R x ( ) = x + x + 1

Which function is symmetric with respect to the y-axis?

Which function is symmetric with respect to the origin?

Explain your answer.

  1. The graph of y = โˆ’ x is shown.

Graph the function y = โˆ’ x โˆ’ 2 + 3 on the same set of axes.

โˆ’8 โˆ’7 โˆ’6 โˆ’5 โˆ’4 โˆ’3 โˆ’2 โˆ’1 1 2 3 4 5 6 7 8 9

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

1

2

3

4

5

6

7

8

  1. Use synthetic division to find

4 3 3 2 4

x x x

x

Express the answer in the form P(x) = (x โ€“ a)Q(x) + R.

For each graph, each tick mark represents one unit.

A

โˆ’8 โˆ’7 โˆ’6 โˆ’5 โˆ’4 โˆ’3 โˆ’2 โˆ’1 1 2 3 4 5 6 7 8 9

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

1

2

3

4

5

6

7

8

โˆ’8 โˆ’7 โˆ’6 โˆ’5 โˆ’4 โˆ’3 โˆ’2 โˆ’1 1 2 3 4 5 6 7 8 9

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

1

2

3

4

5

6

7

8

B

C

โˆ’8 โˆ’7 โˆ’6 โˆ’5 โˆ’4 โˆ’3 โˆ’2 โˆ’1 1 2 3 4 5 6 7 8 9

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

1

2

3

4

5

6

7

8

D

โˆ’8 โˆ’7 โˆ’6 โˆ’5 โˆ’4 โˆ’3 โˆ’2 โˆ’1 1 2 3 4 5 6 7 8 9

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

1

2

3

4

5

6

7

8

E

โˆ’8 โˆ’7 โˆ’6 โˆ’5 โˆ’4 โˆ’3 โˆ’2 โˆ’1 1 2 3 4 5 6 7 8 9

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

1

2

3

4

5

6

7

8

F

โˆ’8 โˆ’7 โˆ’6 โˆ’5 โˆ’4 โˆ’3 โˆ’2 โˆ’1 1 2 3 4 5 6 7 8 9

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

โˆ’

1

2

3

4

5

6

7

8