Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Equilibrium Analysis of a Block on an Inclined Plane, Lecture notes of Engineering

A detailed analysis of the equilibrium conditions for a block resting on an inclined plane. It provides the equations of equilibrium, the free-body diagram, and the calculations to determine the normal and frictional forces acting on the block. The document also discusses the concept of static and kinetic friction, and how they affect the behavior of the block on the inclined plane. Additionally, it explores the maximum angle of the incline at which the block will just begin to slide, and the conditions for the block to remain stationary or start sliding. This comprehensive analysis can be useful for students studying mechanics, statics, or dynamics, as it covers fundamental principles of equilibrium and the application of newton's laws of motion.

Typology: Lecture notes

2016/2017

Uploaded on 02/04/2023

AbishaiMurday
AbishaiMurday 🇨🇦

3 documents

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1

! "$#%#'&)(+*-,/.10325476+89:;(+(<6+=;>@?BA1#%#'&)(+*!*(+.C2ED-?F883G;.$HI=JLKMG;42N.O4QPR2N6+4N=TS.F,
8USE?FS36+2V,/036+2QSW6<.%=X*Y4NSZH[4545=\SWG4]*;(+.C2ED^?F=;_XSWG;4a`;.O.%076+8bdce #fhgi?F=;_XSWG;4
2N.O4QPj256+4N=kS.1,lDT6+=;4QSW6<2,/0m6+2NS36+.%=6+8nbJope#frq;s?ktIu\Gv?'S6+8wSWG;4x,/036+2QSW6<.%=V,/.103254
*Y4NSZH[454N=S3G;4p*;(+.C2ED?1=;_S3G;4`v.O.10Ey*zt{u\6<(+(|S3G;4p*;(+.C2ED7}j.$~%4y
100 lb
W = 200 lb
6+>%:;0m4pl<
.%(+:S36+.%=
6<038mS5'?1838m:;}R4S3G;4l*;(+.C2EDs6<8d=;.1S}j.~C6<=;>;KMG;4,/034N4Q&Z*Y.C__;6+?1>%0W?F}
6<8M:;834N_VS3.j,/.103}S3G;4p45T:v?FS36+.%=8w.F,4NC:6+(+6<*;036<:;}V
 e#C6+45(<_;8 e$#%#
 e#C6+4N(+_;8IeAF#%#
.$Hpv25.%=;8m6+_;4N0
bde
bdceUfgktNA1#%#%teA1#(<*
bJo5eUfrqTt5¡A1#%#e%#(<*
F
W=200
N
100
6<>%:;034

6+=;2N4p?kt
e$#%# ¢XbJcUe $£¤ eA1#¥
S3G;4.%*C¦m452QS6<88mSE?'SW6+.1=v?10m?1=;_x*ztdHI6<(+(|=;.1SI}j.~14 § s838m:;}j9SW6<.%=x6<825.%=¨;03}j45_J
©1ª
#
pf3
pf4
pf5

Partial preview of the text

Download Equilibrium Analysis of a Block on an Inclined Plane and more Lecture notes Engineering in PDF only on Docsity!

! "$#%#'&)(+-,/.10325476+89:;(+(<6+=;>@?BA1#%#'&)(+!*(+.C2ED-?F883G;.$HI=JLKMG;42N.O4QPR2N6+4N=TS.F,

8 USE?FS36+2V,/036+2QSW6<.%=XY4NSZH[4545=\SWG4];(+.C2ED^?F=;_XSWG;4a;.O.%076+8bdce #fhgi?F=;_XSWG; 2 N.O4QPj256+4N=kS .1,lDT6+=;4QSW6<2,/0m6+2NS36+.%=6+8nbJope#frq;s?ktIu\Gv?'S6+8wSWG;4x,/036+2QSW6<.%=V,/. *Y4NSZH[454N=S3G;4p*;(+.C2ED?1=;_S3G;4v.O.10Eyzt{u\6<(+(|S3G;4p;(+.C2ED7}j.$~%4y

W = 200 lb 100 lb

€ 6 +>%:;0m4pl<

‚ .%(+:S36+.%=„ƒ € 6 <038mS5 '?1838m:;}R4†S3G;4l;(+.C2EDs6<8d=;.1S‡}j.ˆ~C6<=;>;‡KMG;4†,/034N4Q&ZY.C_‰ ;6+?1>%0W?F} 6 <8M:;834N_VS3.j,/.103}ŠS3G;4p45‹T:v?FS36+.%=8w.F,Œ4N‹C:6+(+6<*;036<:;}Vƒ Žˆ e‘#‰C6+45(<;8 Ž e’$#%#  Žˆ“ e#‰C6+4N(+;8I”•e–AF#%# — .$Hp v25.%=;8m6+;4N

b d”•e™˜ b dcš”•eœ›UfgktN›žA1#%#%t†eŸˆA1#(<* bJo5” e’›UfrqTt5›¡A1#%#e%#(<*

F

W=

N

100

‚ 6 +=;2N4p?kt Ž e ’$#%# ¢XbJcU”•e Ž$£Œ¤š e’ˆA1#¥ S3G;4 .%C¦m452QSŒ6<8‡8mSE?'SW6+.1=v?10m‰?1=;_xztdHI6<(+(|=;.1SI}j.ˆ~14 § s838m:;}j9SW6<.%=x6<8‡25.%=¨;03}j45_J

hA?O«t A1#%#'&)(+V;(+.C2ED6+8w034N8mSW6<=;>7.1=a?7¬1#%n6<=;25(<6+=;4F®KMG;42N.O4QPj256+4N=kS.1,†8USE?FS36+ ,/0m6+2QSW6+.1=LY4NSZH[454N=¯SWG;4R;(+.C2EDB?1=;LSWG;4R9;(°?F=;4R6<8pbdce±#fhO7u\6+(<(²SWG;4R;(+.C2ED 0 m45}R?16+=³?FSj0m458mSEy´Jhtμ ·¶F#'&ZDT>L}7?18m8R6<803458USW6<=;>-.1=X?-qk¶ 6 <=;25(<6+=;4F^KMG; 2 N.O4QPj256+4N=kS.1,w8mSW?FSW6<2R,/036<2NS36+.%=-|4QSZH{4N45=¸SWG;4(+.C2ED!?1=¯SWG;49;(+?1=;4R6+8bJce #Ofh¬k¶C²u\6+(+(YSWG;4p*;(<.O2EDR034N}7?16<=¹?FSI034N8mSEy

„ºY»¡¼d½ˆ¾/ºY¿ À Á,/034N4Q&)*|.C_‰;6+?1>%03?1}ŠHI6SWGV25.C.%03;6<=v?FS348U‰C8mSW4N}•?1(+6<>%=;45_V?1(<.%=;> S3G;4p6+=;2N(+6<=;46+8M6<(+(<:;8mS30W?FS345_J

F

W

N

30 o

30 o^

y x

Â

€ 6 <>%:;034 ‚ hA

KMG44N‹T:v?FSW6<.%=;8I.1,Ã45‹T:;6<(+6+036+:}Š;4N}7?F=;SWGv?FS Žˆ eŸÄsÅ836<=I¬%#%§Æ Ž e‘# ›Uˆt  Ž'Ç e”ÈĸÅ2N.%8z¬%# e# ›žA%t ?F8383:}R6<=;>SWGv?'SMSWG;4p;(<.O2EDR6+8jÉU,Ê?FS3Ë45=;.%:>%G=.1SMSW.SW6<9L›Ê.1S3G;450UHI6+8m4pH[4=;454N_ S3.xS3458mS{SWG;6<8®?18{?036<>%6+j*|.C‰R?1=;_RHI036<S34wS3G;4}j.%}j45=kS{4N‹T:;6+(<6+*;0m6+:;}S3.O.ktQ ‚.

” eÅÌ2N.%8z¬%# eœ›žAF#%#kt5›šfh1g%g%#kt²eÁ ©¬fhA(+*

?F=;_,/03.%}̛šˆt Ž e œ›žAF#%#kt5›/836<=M¬%# tleÁ$#%#(+|f KMG4}R?'ÍO6+}:;}Î,/.103254?~F?16+(+?1;(<4n,/03.1}ÐÏ{.%(+:}*,/036<2NSW6<.%=6+

bdcU” e’›Ufkt5›š © ¬fhA%t†e‘AO$fh¶1g

HIG6+2EG6<8{(°?F03>%4N0 S3Gv?1=7S3G;4$#%#(+7,/0m6+2QSW6+.1=j,/.%0m254n=;454N_;45_,/.%0[45‹T:;6+(<6+;0m6+:;}V %8m. S3G;4p;(+.C2ED70m45}R?16+=8I?FSI034N8mSw6+=¹8mSW?FSW6<2 4 5‹T:;(<6+;0m6+:;}VŒ n(<SW4N03=v?'SW45(‰

SE?F=I¬%# eŸfh¶ ©%© ¢Xbdc†eŸfhf

?%t[SE?1=MqT¶ e’pÑXbJc†e‘#f¬k¶pÒ *(+.C2ED783(<6+9;8N ;bdc{¢SE?1=IÓÒ 8 3(+6< ?%t[SE?1=I¬%#1{e’fh¶ ©%© ¢‘fhxÒ =.j8m(+6< *vt[SE?1=IqT¶ e’pÑÔ#Ofh¬k¶1Ò 8 3(<6+

 © ¶ˆ&)(+,/.%0m2541 C6+=25(+6<=;45_j?FS{ÞBe‘qT¶F[?18 8 3G.ˆHI=„ 6+8 9 ;:;(<(+6<=;>SWG;4x$#%#'&)(+;(<.O2EDz KMG4-2N.O4QPR2N6+4N=TS.1,x8mSW?FSW6<2B,/0m6+2QSW6+.1=ßY4NSZH[454N=SWG4L(+.C2ED?1=;_\SWG;4B`v.C.%06+ bJcse±%f¬¹?1=;_BSWG;42N.O4QPR2N6+4N=TS.1,[DT6+=;4QSW6<2,/036+2QSW6<.%=a6+8 b„oeÈ%f<j?ktnu\G;?FSp6+ S3G;4,/0m6+2NS36+.%=V,/.%032N4Y4NSZH[454N=LS3G;4;(<.O2ED?1=;_@S3G;49;(+?1=;4$y¸ztwu\6<(+(dSWG;4*;(+.C2ED }j.$~%4y

W = 100 lb α

75 lb

€ 6 +>%:;0m4plh

‚ .%(+:S36+.%=„ƒŒKMG;4p,/034N4Q&ZY.C_‰;6+?1>%03?1}μ9;0m.$~O6<;458MS3G;4p45‹T:v?FS36+.%=¹.1,Œ45‹T:;6+(<6+;0m6+:;}

F

N

45 ä o x

y^ Û

75

75sin45^ å o

100

75cos45o

㠎$ e‘#ƒ © ¶†2N.%8vqT¶ Ä Ž e‘#

. 10 Ž e 㠏¶1¬f#%¬(+* Žˆ“ e#ƒ © ¶²8m6+=MqT¶ ÄÔ$#1#IÆ”•e# . 10 ” e ßqkgf ªk© (+* — .$HSWG4}R?'ÍO6+}:;}Î,/.103254p.1,Ã8mSW?FSW6<2,/036<2NSW6<.%=¹?~F?16+(+?1;(+4n6+ bdcU”•e›š%fh¬%t5›Êq%gf ª%© t†e‘g1fh#%g(< HIG6+2EGi6+8(°?10m>%450SWGv?1=¯S3Gv?FS0m45‹T:;6<0345_¯,/.1045‹T:;6<(+6+036+:} ›ž¶1¬#%¬ktá]KMGT:;8SWG; (+.C2EDV_.O4N8 =;.1S}j.$~%4?1=aSWG;4,/0m6+2QSW6+.1=,/.%0m2546<8nSWG;?FS ;4N}7?1=;45]k‰a4N‹T:;6& (<6+;0m6+:;}Vƒ Ž e ¶F¬fh#1¬(<* f

ˆ¶³K®H[.7*(+.C2EDC8n?10m4x.%=?1=6+=;2N(+6+=45_¹9;(°?F=;4?18n8mG;.$HI=J# {(<.O2ED ŸGv?18n?}7?18m8n.F,

#¹DT>?1=;_$ {(+.C2ED% ÁGv?18?¹}7?F838p.1,®A%¶DC>RKMG;46<=;25(<6+=;4?1=>%(+46<8A1#%5j?kt

u\G;?FSM6+8 SWG;4 }j6+=6+}:;}25.C4NPj256<45=kSI.1,d,/036<2NS36+.%=7S3.9;0m4N~%4N=kSwS3G;4 ;(<.O2EDT8{,/0m.%} 8 m(+6<9;9;6+=>Ty! s8m83:;}j4SWG425.C4NPj2N6+45=kS .F,²,/036<2NSW6<.%=V|4QSZH{4N45=BSWG;4x;(+.C2EDT8s6+8w,/.%:; S36+}j458SWG;42N.O4QPj256+4N=kS.1,I,/036+2QSW6<.%=!Y4NSZH[454N=³S3G;4;(<.O2ED-?1=;_iSWG49;(°?F=;41Bzt u\G;?FSI6+8®S3G;4 SW45=836+.1=6<=¹S3G;4p03.%9Y4$y

A B

€ 6 <>%:;0m4p O<ˆ¶

‚ .%(+:S36+.%=„ƒw n838m:;}R4S3Gv?FSS3G;4*Y.1S3S3.%} *(+.C2ED¯›& tnSW4N=;;8SW.8m(+6<;4_;.$HI=]SWG;

6 <=;25(<6+=;4F

.%:OSM,/03.%}

NA

20 o x

' y

T

WA=98.1N

20 þ o f A € 6 +>1:;034 ‚ <$¶1?

NB

x^ (

WB

NA^ f^ û A )

f û (^) B

€ 6 +>%:;0m4 ‚ ˆ¶F*

:=;;450jSWG;4VSW.%9;(+.C2EDz\KMG;45=^S3G;4,/0m454á&ZY.O‰¸6°?1>%03?1}j8j.F, 4 ?12EG^*;(+.C2EDi6+ 6 <83.%(+?FSW4N¹?18I83G;.$HI=JlKMG;445‹T:v?'SW6+.1=;8I.1,Œ4N‹T:;6+(<6+*;0m6+:;}Î?10m4p,/0m.%} ‚ <$¶1?

 è  e‘#ƒμôXÄ ª Of<‡836<=IA1# Ä Ž e‘# ›Uˆt