Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Direct Method of Interpolation - Numerical Methods - Lecture Slides, Slides of Mathematical Methods for Numerical Analysis and Optimization

Main points are: Direct Method of Interpolation, Interpolation of Discrete, Polynomial of Order, Data Points, Linear Interpolation, Upward Velocity, Function of Time, Quadratic Interpolation, Relative Approximate Error

Typology: Slides

2012/2013

Uploaded on 04/16/2013

mmadhav
mmadhav 🇮🇳

5

(8)

76 documents

1 / 15

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Direct Method of Interpolation
Docsity.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Direct Method of Interpolation - Numerical Methods - Lecture Slides and more Slides Mathematical Methods for Numerical Analysis and Optimization in PDF only on Docsity!

Direct Method of Interpolation

What is Interpolation?

Given (x 0 ,y 0 ), (x 1 ,y 1 ), …… (xn,yn), find the value of ‘y’ at a

value of ‘x’ that is not given.

Figure 1 Interpolation of discrete.

Direct Method

0 1

n n

y  a  a x   a x

Given ‘n+1’ data points (x 0 ,y 0 ), (x 1 ,y 1 ),………….. (xn,yn),

pass a polynomial of order ‘n’ through the data as given

below:

where a 0 , a 1 ,………………. an are real constants.

  • Set up ‘n+1’ equations to find ‘n+1’ constants.
  • To find the value ‘y’ at a given value of ‘x’, simply substitute

the value of ‘x’ in the above polynomial.

Example 1

The upward velocity of a rocket is given as a function of time in Table 1.

Find the velocity at t=16 seconds using the direct method for linear interpolation.

0 0

10 227.

15 362.

20 517.

22.5 602.

30 901.

Table 1 Velocity as a function

of time.

Figure 2 Velocity vs. time data for the rocket example

t , s v    t , m/s 

Example 2

The upward velocity of a rocket is given as a function of time in Table 2.

Find the velocity at t=16 seconds using the direct method for quadratic interpolation.

0 0

10 227.

15 362.

20 517.

22.5 602.

30 901.

Table 2 Velocity as a function

of time.

Figure 5 Velocity vs. time data for the rocket example

t , s v    t , m/s 

Quadratic Interpolation

2 v ta 0  a 1 ta 2 t

2 va 0  a 1  a 2 

2 va 0  a 1  a 2 

2 va 0  a 1  a 2 

Solving the above three equations gives

0

a  17. 733

1

a  0. 3766

2

a 

Quadratic Interpolation

 (^) x 0 , y 0 

x 1 , y 1   x 2 , y 2 

f 2   x

y

x Figure 6 Quadratic interpolation.

Example 3

The upward velocity of a rocket is given as a function of time in Table 3.

Find the velocity at t=16 seconds using the direct method for cubic interpolation.

0 0

10 227.

15 362.

20 517.

22.5 602.

30 901.

Table 3 Velocity as a function

of time.

Figure 6 Velocity vs. time data for the rocket example

t , s v    t , m/s 

Cubic Interpolation

v   t^  a 0  a 1 ta 2 t^2  a 3 t^3

3 3

2 v 10  227. 04  a 0  a 110  a 210  a 10

3 3

2 v 15  362. 78  a 0  a 115  a 2 15  a 15

3 3

2 v 20  517. 35  a 0  a 1 20  a 2 20  a 20

3 3

2 v 22. 5  602. 97  a 0  a 1 22. 5  a 2 22. 5  a 22. 5

a 0  4. 2540 a 1  21. 266 a 2 ^0.^13204 a 3 ^0.^0054347

y

x

f 3   x

x 3 , y 3 

 (^) x 2 , y 2 

 (^) x 1 , y 1 

x 0 , y 0 

Figure 7 Cubic interpolation.

Comparison Table

Order of Polynomial

1 2 3

vt  16  m/s 393.7 392.19 392.

Absolute Relative Approximate Error

---------- 0.38 410 % 0.033269 %

Table 4 Comparison of different orders of the polynomial.

Distance from Velocity Profile

Find the distance covered by the rocket from t=11s to t=16s?

2 3 v t    tttt

     

1605 m

4

  1. 0054347 3

  2. 13204 2

  3. 2540 21. 266

  4. 2540 21. 266 0. 13204 0. 0054347

16 11

16

11

2 3 4

16

11

2 3

16

11

 

  

     

    

 

t t t t

t t t dt

s s v t dt