Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

DC dc circuit analysis implementation, Assignments of Electrical Engineering

Circuit analysis implementation in s domain

Typology: Assignments

2019/2020

Uploaded on 06/10/2020

mpagi-mahad
mpagi-mahad 🇹🇷

5

(1)

2 documents

1 / 18

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
Prof. S. Ben-Yaakov , DC-DC Converters [2- 1]
2.1 Buck converter
2.1.1 Operation modes
2.1.2 Voltage transfer function
2.1.3 Current modes (CCM, DCM)
2.1.4 Capacitor current
2.2 Boost converter
2.2.1 Operation modes
2.2.2 Voltage transfer function
2.3 Buck-Boost converter
2.4 Comparison between topologies
2.5 Simulation of SMPS
2.5.1 The simulations problem
2.5.2 Basics of average model of SMPS
2.5.3 Example: Boost average model simulations
BUCK, BOOST, BUCK-BOOST, DCM
Prof. S. Ben-Yaakov , DC-DC Converters [2- 2]
Buck Converter Constant Switching
Frequency
t
ON ON ON
t
ON ON ON
control
switch
t
on
t
off
T
S
s
s
T
1
f=
DorD
T
t
on
s
on
=
D1D
T
t
off
s
off
=
Switch frequency:
Duty Cycle:
S
V
in
D
L
CR
control
Prof. S. Ben-Yaakov , DC-DC Converters [2- 3]
Operation modes
On
Off
At steady state I
a
=I
b
S
V
in
D
L
CR
S
V
in
D
L
CR
V
L
I
L
t
s
t
V
in
-V
o
-V
o
I
a
I
b
t
Self commutation
V
L
I
L
t
s
t
V
in
-V
o
I
a
t
Commutation
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12

Partial preview of the text

Download DC dc circuit analysis implementation and more Assignments Electrical Engineering in PDF only on Docsity!

2.1 Buck converter

2.1.1 Operation modes 2.1.2 Voltage transfer function

2.1.3 Current modes (CCM, DCM)

2.1.4 Capacitor current 2.2 Boost converter

2.2.1 Operation modes

2.2.2 Voltage transfer function 2.3 Buck-Boost converter

2.4 Comparison between topologies

2.5 Simulation of SMPS 2.5.1 The simulations problem

2.5.2 Basics of average model of SMPS 2.5.3 Example: Boost average model simulations

BUCK, BOOST, BUCK-BOOST, DCM

Prof. S. Ben-Yaakov , DC-DC Converters [2- 2]

Buck Converter Constant Switching

Frequency

t

ON ON ON

t

ON ON ON

control

switch

t on

t off

TS

s

s T

f =

D or D T

t on s

on = →

D 1 D

T

t off s

off = →−

Switch frequency:

Duty Cycle:

S

Vin D

L

C

R

control

Prof. S. Ben-Yaakov , DC-DC Converters [2- 3]

Operation modes

On

Off

At steady state I (^) a=Ib

S

V (^) in D

L

C

R

S

Vin D

L

C

R

V (^) L

I (^) L

t (^) s

t

V (^) in-V (^) o

-V (^) o

I (^) a Ib t

Self commutation

V L

I (^) L

t (^) s

t

Vin -Vo

I (^) a t

Commutation

In this case

Inductor current waveform at steady state

L

V (^) in −Vo

ton

t

I (^) L

t (^) off

L

Vo −

∆ I

S

Vin D

C

R

ton

t (^) off

Buck

Prof. S. Ben-Yaakov , DC-DC Converters [2- 5]

Voltage transfer function

TheI method

Left triangle

on

in ot

L

V V

I ⋅

Right triangle

off

o (^) t

L

V

∆I = ⋅

off

o on

in o t L

V

t L

V V

on s

on

on off

on

in

o (^) D

T

t

t t

t

V

V

= (^) Independent of L!

L

V (^) in −Vo

t (^) on

t

I L

t (^) off

L

Vo −

∆ I

Prof. S. Ben-Yaakov , DC-DC Converters [2- 6]

-V o

V L

t off t

V (^) in-V (^) o

t on

Ts

At steady state, over one switching cycle:

VL = 0 ;

on in

o D V

V

S ++ S−= 0 ⇒ =

S (^) +=(Vin −Vo)⋅ton ;

S (^) −=(−Vo )⋅toff ;

S

Vin D

C

R

ton

toff

V (^) o

V (^) L

Voltage transfer function

The average voltage method

t (^) on

t

I L

t ' off T s

I pk

Voltage transfer function (DCM)

TheI method

off

o on

in o pk t L

V t L

V V I = ′

out

in out on off V

(V V )D D

 

  

 ⋅ +

− = T T(D D ) L

V V

2

1

T

1 I (^) on S on off

in o

S

AV

R

V I (^) AV = o

) V

V V T D( 1 L

V V

2

1 I o

in o on on

in o AV

− ⋅ +

2 Sin o

2 R( Vin −Vo)DonTV= 2 LV

 

  

 = + − 1 RDT

8 L 1 4 L

RDT

V

V

s

2 on

s

2 on

in

o

Prof. S. Ben-Yaakov , DC-DC Converters [2- 11]

Boundary of CCM and DCM

t (^) on

t t (^) off

Ts

L

Vo − L

V (^) in −Vo

IL

L 2

L (^) min

I (^) av

z For CCM L > L (^) min

z In Buck (^) off pk av min

o t I 2 I L

V

s

off

avs

o off min 2 f

RD

2 If

VD

L = =

Prof. S. Ben-Yaakov , DC-DC Converters [2- 12]

Example

A BUCK converter has a following characteristics:

Output voltage: Output current:

Input voltage: Frequency:

Current mode: CCM

Find:

Vo = 5 V I (^) out =Iav= 10 A

Vin = 10 V fs = 100 kHz

L min

1. 2 H

2 If

VD

L

D 1 D 0. 5

CCM

D 0. 5

V

V

5 avs

o off min

on off on in

o

= μ ⋅ ⋅

I

L

t

I

av

t

I

av

I R

I C

t

AC

DC

Capacitor current

Capacitor current

S

Vin D

L

I C^ R L I^ C (^) I control R

V (^) o

C L R

I =I −I

z Assumption:

V 0 has small ripple

Prof. S. Ben-Yaakov , DC-DC Converters [2- 14]

BOOST Step-Up

z V (^) o > V (^) in Why ??

V^ S

in

L D

C R

V

X

V

o

Prof. S. Ben-Yaakov , DC-DC Converters [2- 15]

ON V L =V in

OFF V L =V in -V o

V (^) in

L

C R

Vo

V (^) in

L

C R

V (^) o

Operation modes

VL

I (^) L

t (^) s

t

V in

I (^) a t

V (^) L

I (^) L

t (^) s

t

V (^) in

V (^) in-V (^) o

I (^) a Ib t

Boost

Comparison between basic topologies CCM

S

V (^) in

L D

C R

V (^) o

S Vin D L

C R

V (^) o

S V (^) in D

L C R

V (^) o

S

L D

Basic Cell

L a

b

c

Switched inductor

Prof. S. Ben-Yaakov , DC-DC Converters [2- 20]

Iin

t

Iin

t

Iin

t

Io

t

Io

t

Io

t

Source current Load current

Buck

Boost

Buck Boost

Continues current -> Low ripple component

Discontinues current -> High ripple component

Input and Output Currents

Prof. S. Ben-Yaakov , DC-DC Converters [2- 21]

Modulator Control

D Ve

Vin

Assembly

Switched

o

V

The simulation problem

•The problematic part : Switched Assembly

  • Rest of the circuit continuous - SPICE compatible
  • Only possible simulation :

Time domain (cycle-by-cycle) -Transient

  • The objective : translate the

Switched Assembly into an equivalent

circuit which is SPICE compatible

Modulator Control

D Ve

Vin

Assembly

Switched Vo

The simulation problem

Prof. S. Ben-Yaakov , DC-DC Converters [2- 23]

b d^ c

a

C (^) f

RLoad

Vout

Vin IL

Ib (^) IC

Vout (^) Vout

RLoad RLoad Cf Cf

L

a d (^) c

b

IL IC Ib Vin Vin

b on

T (^) L

Ib IL

IC

d

c

L

Buck Boost

Buck −Boost

T on

Average Simulation of PWM Converters

Prof. S. Ben-Yaakov , DC-DC Converters [2- 24]

T (^) on - switch conduction time

T (^) off - diode conduction time

T (^) DCM - no current time (in DCM)

b L^ a

c

b Ton

TDCM

Toff

L

c

a

The Switched Inductor Model

b

c

Ib

Ic

a a

G

Gb

Gc

Ia

b

c

Ia =IL a

I (^) b =IL⋅D on

Ic =IL⋅D off

G (^) a , G (^) b ,C (^) c - current

dependent sources

c L off

b L on

a L

G I D

G I D

G I

Toward a continuous model

Prof. S. Ben-Yaakov , DC-DC Converters [2- 29]

L

DerivingI

V L

t

IL

IL

V

VL

L

V

IL

L

I

L

V

dt

dI

L

V

dt

dI (^) L L L L = ⇒ =

Average inductor current

Prof. S. Ben-Yaakov , DC-DC Converters [2- 30]

b

c

a L

V(a,b)

V(a,c)

VL

V( a,b)

V ( a,c)

Ton (^) Toff

Ts

on off

S

on off L

V(a,b)D V(a,c)D

T

V(a,b)T V(a,c)T V

Average inductor current

b

c

a

Ga

Gb

Gc

L

rL

IL

EL L

V

Topology independent!

E (^) L =V(a,b)⋅Don+V(a,c)⋅D off

Gc =IL⋅D off

Gb =IL⋅D on

Ga =I L

b

c

a

L on

T

Toff

The Generalized Switched Inductor Model

(GSIM)

Prof. S. Ben-Yaakov , DC-DC Converters [2- 32]

  1. The formal approach

b

c

a

Ga Gb

Gc

Co Ro

Vin

Vo

EL

I L

L

V(a,b)

V( a,c) rL

E (^) L =[V 0 −Vin]⋅Don+[ 0 −V 0 ]⋅Doff

Ga =I(L) Gb=I(L)⋅Don Gc=I(L)⋅D off

Example Implementation in Buck Topology

S

Vin D

L V (^) o

Ro

Co

b

c

a

Prof. S. Ben-Yaakov , DC-DC Converters [2- 33]

  1. The intuitive approach - by inspection

L

Co

in Ro

V

Vo

IL

Ein

Gb

S L

Co o

R

Vin

D

Vo

Polarity: (voltage and current

sources) selected by inspection

Ein −Vo→VL

Ein =Vin⋅D on

Gb =IL⋅D on

Implementation in Buck Topology

V in

Rdson (^) b

c

a

G

Gb

Gc

Co

Ro

rc

a

L

rL

IL

EL L

V

E (^) L =(Va−Vb)⋅Don+(Va−Vc)⋅Doff

Gc =IL⋅D off

Gb =IL⋅D on

Ga =I L

Modified Average Model

Prof. S. Ben-Yaakov , DC-DC Converters [2- 38]

IL and D (^) on are time dependent variables {IL (t), D (^) on (t) }

D (^) on is not an electrical variable

ILDon

b

G L^ L

I

Making the model SPICE compatible

Prof. S. Ben-Yaakov , DC-DC Converters [2- 39]

D (^) on is coded into voltage

Source

Don

Name ofnode:"Don"

V (D ) I(L)

on

∗ L

Gvalue

In SPICE environment

Running SPICE simulation

DC (steady state points) - as is

TRAN (time domain) - as is

AC ( small signal) - as is

  • Linearization is done by simulator!

Simulation

Prof. S. Ben-Yaakov , DC-DC Converters [2- 41]

I L

b

c

a L^

Ton

Toff

Ton Toff

Toff

Ts

t

L ILpk

I

on s

s on off 1 D T

T T

D' = −

T' (^) off =Ts−T on

Discontinuous Model (DCM)

Prof. S. Ben-Yaakov , DC-DC Converters [2- 42]

1.The average inductor current in DCM

VL (^) V(a,b)

V(a,c)

Ts

Ton Toff

T'off

t

b

c

a L

V(a,b)

V(a,c)

Ton

VL =V(a,b)Don+V(a,c)DoffasinCCM

Combining CCM / DCM

b

c

a

L

b

c

a

Ga

Gb

Gc

Ga ≡IL

on off

L on b D D

ID

G

on off

L off c D D

ID

G

E (^) L =V(a,b)⋅Don+V(a,c)⋅D off

= − − on

on

L s off on D V(a,b)D

2 ILf D min( 1 D),

L

rL

IL

EL VL

The combined DCM / CCM mode

Prof. S. Ben-Yaakov , DC-DC Converters [2- 47]

Example: Boost average model simulation

Rsw {Rsw}

EDoff

min(2I(Lmain)Lmain/(Tsv(a,b)V(Don))-V(Don),1-V(Don))

etable

OUT+ OUT-

IN+ IN-

Resr {Resr}

Gc

V(Doff)*I(Lmain)/(V(Don)+V(Doff))

GVALUE

OUT+

OUT- IN+

IN-

PARAMETERS: LMAIN = 75u COUT = 220u RLOAD = 10

Doff

Gb

V(Don)*I(Lmain)/(V(Don)+V(Doff))

GVALUE

OUT+

OUT- IN+

IN-

0

Lmain {Lmain}

RLoad {RLoad}

Dbreak

Dmain

VDon {VDon}

Rinductor

{Rinductor}

EL

(V(Don)V(a,b)+V(Doff)V(a,c))

EVALUE

OUT+ OUT-

IN+ IN-

1

0

PARAMETERS: FS = 100k TS = {1/fs}

b

Vin_DC

{Vin_DC}

a Cout {Cout}

PARAMETERS: RESR = 0. RINDUCTOR = 0. RSW = 0.

PARAMETERS: VIN_DC = 10v VDON = 0.

c out

Ga

I(Lmain)

GVALUE

OUT+ OUT-

IN+ IN-

Don

S

L

Co o R Vin

D Vo

Prof. S. Ben-Yaakov , DC-DC Converters [2- 48]

Example: Boost average model simulation

Example: Boost average model simulation

S

L

Co o R Vin

D Vo

Prof. S. Ben-Yaakov , DC-DC Converters [2- 50]

Example: Boost average model simulation

S

L

Co o R Vin

D Vo

Prof. S. Ben-Yaakov , DC-DC Converters [2- 51]

Boost: Response to step of input voltage

Ti me

3 0 ms 3 5 ms 4 0 ms 4 5 ms 5 0 ms V( o u t )

1 8 V

1 9 V

2 0 V

2 1 V

SEL>>

V( a )

9 V

1 0 V

1 1 V

1 2 V

(average model simulation)

Vin

Vout