Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Chemical Engineering Thermodynamics Example Assignment, Assignments of Process Engineering

Chemical Engineering Thermodynamics Example Assignment from ฤฐTU

Typology: Assignments

2024/2025

Uploaded on 04/05/2025

selin-senturk
selin-senturk ๐Ÿ‡น๐Ÿ‡ท

1 document

1 / 14

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
ITU Faculty of Chemical and Metallurgical Engineering
Department of Chemical Engineering
543
E
Advanced Chemical Engineering Thermodynamics
Spring
202
4
-
202
5
HW
No
:1
1
STUDENT
NO
NAME
S
URNAME
506231025
506241003
Setenay Fฤฑrat
Selin ลžentรผrk
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe

Partial preview of the text

Download Chemical Engineering Thermodynamics Example Assignment and more Assignments Process Engineering in PDF only on Docsity!

ITU Faculty of Chemical and Metallurgical Engineering

Department of Chemical Engineering

KMM 543 E

Advanced Chemical Engineering Thermodynamics

Spring 2024 - 2025

HW No: 1

STUDENT NO NAME SURNAME

Setenay Fฤฑrat

Selin ลžentรผrk

KMM 543E

Spring 2024 - 2025

Homework 1

Question 1) At 298 K, consider the following molecules: Hโ‚‚O, HF, CHโ‚„, CHโ‚ƒF, and CFโ‚„. The

relative strengths of van der Waals interactions (dipole-dipole, induction, and dispersion) depend

on molecular properties such as dipole moment (ฮผ), polarizability (ฮฑ), and ionization energy ( I ).

Compare van der waals interactions and predict which molecule will have the highest boiling

point based on these interactions.

For homework part: calculate C 6 and correct your assumptions based on your calculations.

Molecule ฮผ [D] ฮฑ [cmยณ ร— 10ยฒโต] I [eV] Acting Forces

Hโ‚‚O 1.85 14.6 12.

HF 1.82 6.3 15.

CHโ‚„ 0 26.0 12.

CHโ‚ƒF 1.85 35.5 11.

CFโ‚„ 0 95.0 12.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Redlich-Kwong Iteration for Propane in a 0.1 L Vial at 309 K & 1.01325 bar % P_calc(n) = (RT)/(v - b) - a/(sqrt(T)v(v+b)) = P_target, % where v = V/n is the molar volume. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear; clc; format long; %---------------------- Given/Known Data --------------------------------- R = 0.08314; % Gas constant [Lยทbar/(molยทK)] T = 309; % Temperature [K] P = 1.01325; % Target pressure [bar] V = 0.100; % Vial volume [L] Mw = 44.1; % Molar mass of propane [g/mol] % Critical properties of propane: Tc = 369.8; % Critical temperature [K] Pc = 42.48; % Critical pressure [bar] %------------------ Calculate Redlich-Kwong Parameters -------------------- a = 0.42748 * (R^2 * Tc^(2.5)) / Pc; % Parameter a [L^2ยทbar/mol^2] b = 0.08664 * (R * Tc) / Pc; % Parameter b [L/mol] %------------------- Define Function f(n) -------------------------------- % f(n) = P_calc(n) - P_target; we seek n such that f(n) = 0. f = @(n) RK_pressure(n, a, b, R, T, V) - P; %------------------- Bisection Method Setup ------------------------------ % Choose an initial bracket [nLow, nHigh] where f(nLow)f(nHigh) < 0. nLow = 1e-5; % Lower bound for n [mol] nHigh = 0.1; % Upper bound for n [mol] fLow = f(nLow); fHigh = f(nHigh); if fLow * fHigh > 0 error('Function does not change sign over [nLow, nHigh]. Adjust the bounds.'); end maxIter = 50; % Maximum number of iterations tolerance = 1e-6; % Convergence tolerance for |f(n)| [bar] disp(' Iter nLow nHigh nMid f(nMid) '); for i = 1:maxIter nMid = 0.5 * (nLow + nHigh); % Midpoint of current bracket fMid = f(nMid); % Display iteration info: fprintf('%4d %10.6g %10.6g %10.6g %10.6g\n', i, nLow, nHigh, nMid, fMid); 1

13 0.00398909 0.00401351 0.0040013 0. 14 0.00398909 0.0040013 0.0039952 -0. 15 0.0039952 0.0040013 0.00399825 -0. 16 0.00399825 0.0040013 0.00399977 0. 17 0.00399825 0.00399977 0.00399901 8.91907e- 18 0.00399825 0.00399901 0.00399863 -6.13083e- 19 0.00399863 0.00399901 0.00399882 4.153e- 20 0.00399863 0.00399882 0.00399873 1.76996e- 21 0.00399863 0.00399873 0.00399868 5.78437e- 22 0.00399863 0.00399868 0.00399865 -1.73227e- Bisection converged in 22 iterations. Solution: n = 0.00399865 mol Mass of propane = 0.1763 g Published with MATLABยฎ R2024b 3

Given Data

T = 309; % Temperature [K] P = 1.01325; % Pressure [bar] V = 0.100; % Volume [L] R = 0.08314; % Gas constant [Lยทbar/(molยทK)] MW = 44.1; % Molar mass of propane [g/mol] omega = 0.152; % Acentric factor for propane % Critical properties for propane: T_c = 369.8; % Critical temperature [K] P_c = 42.48; % Critical pressure [bar]

Calculate Reduced Properties

Tr_target = T / T_c; % Reduced temperature, ~0. Pr_target = P / P_c; % Reduced pressure, ~0.

Define Minimal Grid from the Leeโ€“Kesler Ta-

bles

For Table D.1 (Z0): For TR = 0.80: PR = 0.0100 --> Z0 = 0.9935 PR = 0.0500 --> Z0 = 0.9669 For TR = 0.85: PR = 0.0100 --> Z0 = 0.9946 PR = 0.0500 --> Z0 = 0. For Table D.2 (Z1): For TR = 0.80: PR = 0.0100 --> Z1 = -0.0648 PR = 0.0500 --> Z1 = -0.0767 For TR = 0.85: PR = 0.0100 --> Z1 = -0.0622 PR = 0.0500 --> Z1 = -0. PR = [0.0100, 0.0500]; % Reduced pressure grid values TR = [0.80, 0.85]; % Reduced temperature grid values % Matrices for Z0 and Z1 (rows correspond to TR, columns to PR) Z0_table = [0.9935, 0.9669; 0.9946, 0.9725]; Z1_table = [-0.0648, -0.0767; -0.0622, -0.0731]; % Create grid matrices for interpolation [PR_grid, TR_grid] = meshgrid(PR, TR);

Perform Bilinear Interpolation for Z0 and Z

Z0_interp = interp2(PR_grid, TR_grid, Z0_table, Pr_target, Tr_target); Z1_interp = interp2(PR_grid, TR_grid, Z1_table, Pr_target, Tr_target);

Calculate Overall Compressibility Factor (Z)

Z = Z0_interp + omega * Z1_interp; 2

Calculate Number of Moles and Mass of Pro-

pane

n = P * V / (Z * R * T); % n = PV / (Z R T) mass = n * MW; % Mass in grams

Display the Results

fprintf('Interpolated Z0 = %f\n', Z0_interp); fprintf('Interpolated Z1 = %f\n', Z1_interp); fprintf('Overall compressibility factor, Z = %f\n', Z); fprintf('Number of moles, n = %e mol\n', n); fprintf('Mass of propane = %f g\n', mass); Interpolated Z0 = 0. Interpolated Z1 = -0. Overall compressibility factor, Z = 0. Number of moles, n = 4.040993e-03 mol Mass of propane = 0.178208 g Published with MATLABยฎ R2024b 3

(c) BUBL T , given x1=0.14, x2=0.13, x3=0.25, and P=15 bar.

P = 15 bar = 217. 56 psia

(K-values for systems of light hydrocarbons from DePriester Charts.)

Species xi Ki Ki* xi Ki Ki* xi Ki Ki* xi Ethane 0,14 2,20 0,31 3,50 0,49 3,60 0, Propane 0,13 0,70 0,09 1,40 0,18 1,45 0, ฤฐsobutane 0,25 0,30 0,08 0,68 0,17 0,70 0, ฤฐsopentene 0,48 0,10 0,05 0,23 0,11 0,25 0, Sum of Ki* xi (yi)= 0,52 0,95 (^) 0,99 ๏€ 1

BUBL T= 145 โ„‰ = 62.78 ยฐC

(d) DEW T, given y1=0.42, y2=0.30, y3=0.15, and P=15 bar.

P = 15 bar = 217. 56 psia

(K-values for systems of light hydrocarbons from DePriester Charts.)

Species yi Ki yi/Ki Ki yi/Ki Ki yi/Ki Ethane 0,42 4,00 0,11 3,90 0,11 3,70 0, Propane 0,3 1,60 0,19 1,57 0,19 1,50 0, ฤฐsobutane 0,15 0,80 0,19 0,78 0,19 0,75 0, ฤฐsopentene 0,13 0,30 0,43 0,28 0,46 0,27 0, Sum of yi/Ki(xi )= 0,91 0,96 (^) 0,99 ๏€ 1

DEW T= 150 โ„‰= 65.56 ยฐC

Question 4)

(c) Given ๐‘ฅ 1 = 0.33 and ๐‘ƒ = 120 kPa, find ๐‘ฆ 1 and ๐‘‡.

x 1 = 0.33, x 2 = 0. 67 , P= 120 kPa, ๐‘ป๐Ÿ^ ๐’”๐’‚๐’•^ = ๐Ÿ–๐Ÿ“, ๐Ÿ“๐Ÿ—โ„ƒ, ๐‘ป๐Ÿ^ ๐’”๐’‚๐’•^ = ๐Ÿ๐Ÿ๐Ÿ”, ๐Ÿ”๐Ÿ•โ„ƒ

(d) Given ๐‘ฆ 1 = 0.33 and ๐‘ƒ = 120 kPa, find ๐‘ฅ 1 and ๐‘‡.

y 1 = 0.33, y 2 = 0. 67 , P= 120 kPa, ๐‘ป๐Ÿ^ ๐’”๐’‚๐’•^ = ๐Ÿ–๐Ÿ“, ๐Ÿ“๐Ÿ—โ„ƒ, ๐‘ป๐Ÿ^ ๐’”๐’‚๐’•^ = ๐Ÿ๐Ÿ๐Ÿ”, ๐Ÿ”๐Ÿ•โ„ƒ

Parameters for Antoine Eq. Name A B C Benzene 13,7819 2726,81 217, Toluene 13,932^ 3056,96^ 217, T ( โ„ƒ) ๐‘ท๐Ÿ^ ๐’”๐’‚๐’•^ (๐’Œ๐‘ท๐’‚) ๐‘ท๐Ÿ^ ๐’”๐’‚๐’•^ (๐’Œ๐‘ท๐’‚) ๐‘ท = ๐’™๐Ÿ ร— ๐‘ท๐Ÿ^ ๐’”๐’‚๐’•^ + ๐’™๐Ÿ ร— ๐‘ท๐Ÿ^ ๐’”๐’‚๐’•^ (๐’Œ๐‘ท๐’‚) 90 136,50 54,31 81, 100 180,45 74,26 109, 102 190,42 78,87 115, 103 195,55 81,26 118, 104 200,79 83,70 122, 103,5 198,16 82,47 120, 103,4 197,64 82,23 120, 103,3 197,11 81,98 119, 103,31 197,17 82,01 120, T (โ„ƒ) ๐‘ท๐Ÿ^ ๐’”๐’‚๐’•^ (๐’Œ๐‘ท๐’‚) ๐‘ท๐Ÿ^ ๐’”๐’‚๐’•^ (๐’Œ๐‘ท๐’‚) (๐’š๐Ÿ ร—^

๐‘ท๐Ÿ^ ๐’”๐’‚๐’•
) +^ (๐’š๐Ÿ ร—^
๐‘ท๐Ÿ^ ๐’”๐’‚๐’•