Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solving Characteristic Equations & IVP in Diff. Equations, Quizzes of Linear Algebra

A detailed solution to a characteristic equation and an initial value problem (ivp) in differential equations. The characteristic equation is a third-order polynomial, and the ivp involves finding the solution using laplace transforms. The solution to the characteristic equation is presented in terms of exponential functions and trigonometric functions. The ivp is solved using the inverse laplace transform, resulting in a combination of cosine and sine functions, as well as exponential functions.

Typology: Quizzes

2020/2021

Available from 05/27/2024

RidRiaq_08
RidRiaq_08 ๐Ÿ‡บ๐Ÿ‡ธ

11 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
CHARACTERISTIC EQUATIONS AND IVP
1. Find the general solution to the equation (using the characteristic polynomials).
2๐‘ฆโ€ฒโ€ฒโ€ฒ+๐‘ฆโ€ฒโ€ฒ+2๐‘ฆโ€ฒ=0โ†’2๐‘Ÿ3+๐‘Ÿ2+2๐‘Ÿ=0
since ๐‘“(๐‘Ÿ) do not have a constant term and the term with the lowest power is zr, then
๐‘“(๐‘Ÿ)
๐‘Ÿ=2๐‘Ÿ2+๐‘Ÿ+2=0
Then, ๐‘Ÿ=0. To find the remaining roots, we can apply the quadratic formula
๐‘Ÿ=โˆ’๐‘ยฑโˆš๐‘2โˆ’4๐‘Ž๐‘
2๐‘Ž =โˆ’1ยฑโˆš12โˆ’4(2)(2)
2(2) =โˆ’1ยฑโˆš15๐‘–
4=โˆ’1
4ยฑ๐‘–โˆš15
4
with roots ๐‘Ÿ=0,โˆ’1
4+๐‘–โˆš15
4,โˆ’1
4โˆ’๐‘–โˆš15
4
Thus, the general solution is given by: ๐‘ฆ๐บ=๐‘1๐‘’๐‘Ÿ1๐‘ฅ+๐‘2๐‘’๐‘Ÿ2๐‘ฅ+โ‹ฏ+๐‘๐‘›๐‘’๐‘Ÿ๐‘›๐‘ฅ
๐‘ฆ๐บ=๐‘1+๐‘2๐‘’โˆ’1/4๐‘ฅcosโก(โˆš15๐‘ฅ/4)+๐‘3๐‘’โˆ’1/4๐‘ฅsinโก(โˆš15๐‘ฅ/4)
2. Using Laplace transforms, solve the IVP
๐‘ฆโ€ฒโ€ฒโˆ’3๐‘ฆโ€ฒ+2๐‘ฆ=20sin(2๐‘ก),โกโกโก๐‘ฆ(0)=0,๐‘ฆโ€ฒ(0)=0
โ„’{๐‘ฆโ€ฒโ€ฒโˆ’3๐‘ฆโ€ฒ+2๐‘ฆ}=โ„’{20sinโก(2๐‘ก)}โ†’ ๐‘Ž
๐‘ 2+๐‘Ž2,๐‘ >0
๐‘ 2๐‘Œ(๐‘ )โˆ’๐‘ ๐‘ฆ(0)โˆ’๐‘ฆโ€ฒ(0)โˆ’3[๐‘ ๐‘Œ(๐‘ )โˆ’๐‘ฆ(0)]+2๐‘Œ(๐‘ )=20(2
๐‘ 2+22)
Substitute the terms,
๐‘ 2๐‘Œ(๐‘ )โˆ’0โˆ’0โˆ’3[๐‘ ๐‘Œ(๐‘ )โˆ’0]+2๐‘Œ(๐‘ )= 40
๐‘ 2+4
๐‘Œ(๐‘ )(๐‘ 2โˆ’3๐‘ +2)=40
๐‘ 2+4
๐‘ฆ(๐‘ )= 40
๐‘ 2+4(๐‘ 2โˆ’3๐‘ +2)
40
(๐‘ 2+4)(๐‘ 2โˆ’3๐‘ +2)=40
(๐‘ 2+4)(๐‘ โˆ’1)(๐‘ โˆ’2)=๐ด๐‘ +๐ต
(๐‘ 2+4)+๐ถ
(๐‘ โˆ’1)+๐ท
(๐‘ โˆ’2)
40=๐ด๐‘ +๐ต(๐‘ โˆ’1)(๐‘ โˆ’2)+๐ถ(๐‘ 2+4)(๐‘ โˆ’2)+๐ท(๐‘ 2+4)(๐‘ โˆ’1)
40=๐ด๐‘ 3โˆ’3๐ด๐‘ 2+2๐ด๐‘ +๐ต๐‘ 2โˆ’3๐ต๐‘ +2๐ต+๐ถ๐‘ 3โˆ’2๐ถ๐‘ 2+4๐ถ๐‘ โˆ’8๐‘+๐ท๐‘ 3โˆ’๐ท๐‘ 2+4๐ท๐‘ โˆ’4๐ท
pf3

Partial preview of the text

Download Solving Characteristic Equations & IVP in Diff. Equations and more Quizzes Linear Algebra in PDF only on Docsity!

CHARACTERISTIC EQUATIONS AND IVP

  1. Find the general solution to the equation (using the characteristic polynomials).

โ€ฒโ€ฒโ€ฒ

โ€ฒโ€ฒ

โ€ฒ

3

2

since ๐‘“(๐‘Ÿ) do not have a constant term and the term with the lowest power is zr, then

2

Then, ๐‘Ÿ = 0. To find the remaining roots, we can apply the quadratic formula

2

2

with roots ๐‘Ÿ = 0 , โˆ’

1

4

โˆš 15

4

1

4

โˆš 15

4

Thus, the general solution is given by: ๐‘ฆ ๐บ

1

๐‘Ÿ

1

๐‘ฅ

2

๐‘Ÿ

2

๐‘ฅ

๐‘›

๐‘Ÿ

๐‘›

๐‘ฅ

๐บ

1

2

โˆ’ 1 / 4 ๐‘ฅ

cos (โˆš 15 ๐‘ฅ/ 4 ) + ๐‘

3

โˆ’ 1 / 4 ๐‘ฅ

sin (โˆš 15 ๐‘ฅ/ 4 )

  1. Using Laplace transforms, solve the IVP

โ€ฒโ€ฒ

โ€ฒ

  • 2 ๐‘ฆ = 20 sin

โ€ฒ

โ€ฒโ€ฒ

โ€ฒ

  • 2 ๐‘ฆ} = โ„’{20sin ( 2 ๐‘ก)} โ†’

2

2

2

โ€ฒ

( 0 ) โˆ’ 3 [๐‘ ๐‘Œ(๐‘ ) โˆ’ ๐‘ฆ( 0 )] + 2 ๐‘Œ(๐‘ ) = 20 (

2

2

Substitute the terms,

2

๐‘Œ(๐‘ ) โˆ’ 0 โˆ’ 0 โˆ’ 3 [๐‘ ๐‘Œ(๐‘ ) โˆ’ 0 ] + 2 ๐‘Œ(๐‘ ) =

2

2

2

2

2

2

2

2

2

2

2

3

2

2

3

2

3

2

Thus,

Coefficient of ๐‘ 

3

2

const: 40 = 2 ๐ต โˆ’ 8 ๐ถ โˆ’ 4 ๐ท

Use the coefficient matrix and vector for this system of

๐‘ฅ = [

] ๐‘ฆ = [

]

๐‘ฆ, 1

๐‘ฆ, 2

๐‘ฆ, 3

D =

๐‘ฆ, 4

We get ๐ด = 3 , ๐ต = โˆ’ 2 , ๐ถ = โˆ’ 8 , ๐ท = 5. Substituting into the equation,

2

2

We can now apply the inverse transform,