Partial preview of the text
Download CALCULUS PROBLEM AND SOLUTIONS and more Exercises Engineering in PDF only on Docsity!
x) given that f(x) = 16x‘ — 9x” —x given that g’(t) = 4t5 + 16t” — 18t +72 athe, cL peepee os equations that are true for Right Tie ngle Identities page.) j ( 5 a name: Zz Sa (\» ane-= = moe '6 ACUTE ;WWAT 1G THe value oF Sete . 8 ~ opppnte Ga = y a ~ hypokenuce we fee oso 2 0d 4 agen hyp eras 4 fon ® 2% Ce seo 4 3° ite =? ay = oe x 2 25-9 Ae « 0 x= 4 @sin b= 0-0 and Ai and is olohce Gin B= 0 =D and & 'S Acute 4 paulle ve Waal K dhe work value of wc (a 40)7 i. fry) b Par. B* 5 i? vena ga 0- re = V0 fk obser 7 pBae = Gn 2 hue Fee As : gin 2 = vega = Ye AS ype nse ae Oppeatt sain ath =C m2 toa fe tive Gn A> Syponte os esac 2% lu we Fiyprho = 7 -|b a ime ¥ CE grees 7S || q rx 328 pee Woeaes “1 x ={h Co, p adjawwt Gat hypotenuse 005 (ASB) = Coe & ~adsent aa ws k= Ae be cos (41 P) —- an kein B = wad (0) Is)(4e) nd 15 acule ,whal is dhe gyact value 9% Gin 2, prac valu of Ga ot ke c ne ae | ; } \ lj be gy | ch bze Dy f bye oe D on { fin a = 25in8 uc ‘i >pP (Ee) F¥od? tin f(xy =% evaluate each of the following. b. f-1)f(-1) c. £(0) ; d. f(1/2) e. £(3/2) function f(x)=(17)x evaluate each of the following. ibef(1) c. f(0) d. £(2) e. f(4) 1 each of the following, 5* b. g(x)=5-4 C. A(xJ=Se3 e graph of f(x) = e*-1. h the graph of f(x) = (1/7)"*-1. 0 -f(0) =(I) x (12) () | d. f(z) 4 = f(2) =(19)v per £(2) *(19)(2) d Ci eg * C . < [Per=oy | | e- F(a) | £4 ) (12) & ___{r)(4) [F< ea Scanned wilh CamScanner + Sech(2) 4 _, Doman ot A SAW, aii -2*) junction: pomain of * MPEReIC GecA EWNCTONS pray OT A Omg funaion . Domain OF THE Unsere Functions 9 aoe +4 In) 4a (4) x ~4e (Cod) + la(A) x7 + x7(hn() Je +4[n (0 - -4fq( 2)x - 4&(In&x) +n (2 \¢ ty? (In («))e Jn{2}) +4 bol x) - “4 (2\n(2))- Nevo: a\n(2)32 4x *(\n(ad Jax cy Inle)+4InG0) -#hl2)x - ~ 4x (InGa) + aIq(2) x? $y? (\n (x))de a Sina) fant x)~ {8n(2) x ~ {4x( ite) + fala \n(a)x? bi “(in (0) de = Glnle)x+ 4x (Inbe)) -4xe ~4In (2 )x*- 2x *(Inbo)a” 4 2ine)x Antehe side xe > Bhn(2)x 4 4<(Inbe)- dy - -A\n a) ~ De (\nix))}4" a ane sntise = Ahad $4 (wn) Aa Mn) 2°20" (Ina) 4° rent Wien ae ely (a\(o\ +4 (2\ (2) (\nlo) )-4( ee 4)n @)b’) -1(2)(\ \n() 4 + 2\n sete os . Hanarnsan ED(wed) =A) ACY -7 o(i)f\nG)}¥0) + MAb? - i) “eale) 42\a(2) “eM (9?) -2 nk ‘Yine}+4 | 4\n (2) - -oah4 “aie - il wile) 6 seis save) 2h) g- (TRE - a -1(¢*)(Wo)) 444 I (n(2) $231 nehatnle) -(2\nfo\ie 4 Stina} 14h) i ) aH) (4, | ~ 4 (6)( Sint \sde)ds) )- “+ (sia ('e4a)da) | #[fs0tvs]Q))a | m4 sot q 4 a # ) fate y - p(-ces Cinta) 3 Cos(I+42) | 7 +e AR