Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

201-NYA-05, Exams of Calculus

201-NYA-05 - Calculus 1. WORKSHEET: INTEGRALS. Evaluate the following indefinite integrals: 1. ∫. (4x + 3) dx. 2. ∫. (4x2 - 8x + 1) dx.

Typology: Exams

2021/2022

Uploaded on 09/27/2022

stifler
stifler 🇮🇹

4

(6)

215 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
201-NYA-05 - Calculus 1
WORKSHEET: INTEGRALS
Evaluate the following indefinite integrals:
1. Z(4x+ 3) dx
2. Z(4x28x+ 1) dx
3. Z(9t24t+ 3) dt
4. Z(2t3t2+ 3t7) dt
5. Z1
z33
z2dz
6. Z4
z77
z4+zdz
7. Z3u+1
udu
8. Z(u31
2u2+ 5) du
9. Z(2v5/4+ 6v1/4+ 3v4)dv
10. Z(3v5v5/3)dv
11. Z(3x1)2dx
12. Zx1
x2
dx
13. Zx(2x+ 3) dx
14. Z(2x5)(3x+ 1) dx
15. Z8x5
3
xdx
16. Z2x2x+ 3
xdx
17. Zx31
x1dx
18. Zx3+ 3x29x2
x2dx
19. Z(t2+ 3)2
t6dt
20. Z(t+ 2)2
t3dt
21. Z3
4cos u du
22. Z1
5sin u du
23. Z7
csc xdx
24. Z1
4 sec xdx
25. Z(t+ cos t)dt
26. Z(3
t2sin t)dt
27. Zsec t
cos tdt
28. Z1
sin2tdt
29. Z(csc vcot vsec v)dv
30. Z(4 + 4 tan2v)dv
31. Zsec wsin w
cos wdw
32. Zcsc wcos w
sin wdw
33. Z(1 + cot2z) cot z
csc zdz
34. Ztan z
cos zdz
35. Zd
dx px2+ 4 dx
36. Zd
dx
3
px38dx
37. Zd
dx sin 3
x dx
38. Zd
dx tan x dx
39. d
dx Zx3x4dx
40. d
dx Zx43
px2+ 9 dx
41. d
dx Zcot x3dx
42. d
dx Zcos px2+ 1 dx
pf3

Partial preview of the text

Download 201-NYA-05 and more Exams Calculus in PDF only on Docsity!

201-NYA-05 - Calculus 1

WORKSHEET: INTEGRALS

Evaluate the following indefinite integrals:

(4x + 3) dx

(4x^2 − 8 x + 1) dx

(9t^2 − 4 t + 3) dt

(2t^3 − t^2 + 3t − 7) dt

∫ (^

z^3 −^

z^2

dz

∫ (^4

z^7

z^4

  • z

dz

u +

√^1

u

du

u^3 − 1 2

u−^2 + 5) du

(2v^5 /^4 + 6v^1 /^4 + 3v−^4 ) dv

(3v^5 − v^5 /^3 ) dv

(3x − 1)^2 dx

x − 1 x

dx

x(2x + 3) dx

(2x − 5)(3x + 1) dx

8 x − 5 √ (^3) x dx

2 x^2 − √ x + 3 x dx

x^3 − 1 x − 1

dx

x^3 + 3x^2 − 9 x − 2 x − 2

dx

(t^2 + 3)^2 t^6 dt

t + 2)^2 t^3

dt

cos u du

sin u du

csc x

dx

4 sec x

dx

t + cos t) dt

t^2 − sin t) dt

sec t cos t

dt

sin^2 t

dt

(csc v cot v sec v) dv

(4 + 4 tan^2 v) dv

sec w sin w cos w dw

csc w cos w sin w

dw

(1 + cot^2 z) cot z csc z dz

tan z cos z

dz

d dx

x^2 + 4 dx

∫ (^) d

dx

√ (^3) x (^3) − 8 dx

∫ (^) d

dx

sin 3

x dx

d dx

tan x dx

d dx

x^3

x − 4 dx

d dx

x^4

x^2 + 9 dx

d dx

cot x^3 dx

d dx

cos

x^2 + 1 dx

Solve the differential equation subject to the given conditions:

  1. f ′(x) = 12x^2 − 6 x + 1 f (1) = 5

  2. f ′(x) = 9x^2 + x − 8 f (−1) = 1

dy dx

= 4x^1 /^2 y = 21 when x = 4

Evaluate the following definite integrals:

0

2 x dx

2

3 dv

− 1

(x − 2) dx

2

(− 3 v + 4) dv

− 1

(t^2 − 2) dt

0

(3x^2 + x − 2) dx

0

(2t − 1)^2 dt

− 1

(t^3 − 9 t) dt

1

x^2

dx

− 2

u −

u^2

du

1

u − 2 √ u

du

− 3

v^1 /^3 dv

− 1

t − 2) dt

1

x dx

0

x −

x 3

dx

0

(2 − t)

t dt

− 1

(t^1 /^3 − t^2 /^3 ) dt

− 8

x − x^2 2 3

x dx

0

| 2 x − 3 | dx

0

|x^2 − 4 x + 3| dx

∫ (^) π

0

(1 + sin x) dx

∫ (^) π/ 4

0

1 − sin^2 θ cos^2 θ

∫ (^) π/ 6

−π/ 6

sec^2 x dx

∫ (^) π/ 2

π/ 4

(2 − csc^2 x) dx

∫ (^) π/ 3

−π/ 3

4 sec θ tan θ dθ

∫ (^) π/ 2

−π/ 2

(2t + cos t) dt

∫ (^) e

1

2 x +^1 x

dx

1

x + 1 x

dx

0

(ex^ + 6) dx

0

(t − et) dt

− 1

(eθ^ + sin θ) dθ

∫ (^2) e

e

cos x − 1 x

dx